
 

AFRL-IF-RS-TR-2002-29 
Final Technical Report 
February 2002 
 
 
 
 
 
 
PEER TO PEER INFORMATION SYSTEM 
MANAGEMENT 
 
BBN Technologies  
 
  
 
  
 
 
 
 
 
 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 
 
 
 
 
 
 
 
 
 
 
 
 
 

AIR FORCE RESEARCH LABORATORY 
INFORMATION DIRECTORATE 

ROME RESEARCH SITE 
ROME, NEW YORK 

 
 

 



 

 This report has been reviewed by the Air Force Research Laboratory, Information 
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical 
Information Service (NTIS).  At NTIS it will be releasable to the general public, including 
foreign nations. 
 
 
 AFRL-IF-RS-TR-2002-29 has been reviewed and is approved for publication. 
 
 
 
 
APPROVED: 

       
 
 
 
 

 
 FOR THE DIRECTOR: 
     WARREN H. DEBANY, Jr., Technical Advisor 
     Information Grid Division  
     Information Directorate  
 
 
 
 
 



 

 

REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 074-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302, 
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503 

1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE
        Feb 02 

3.. REPORT TYPE AND DATES COVERED 
    Final   Aug 96 – Sep 98 

4. TITLE AND SUBTITLE 
 
PEER TO PEER INFORMATION SYSTEM MANAGEMENT 
 

6. AUTHOR(S) 
 
Robert Coulter, Irvin Schick and Linsey O’Brien 
  

5.  FUNDING NUMBERS 
C     - F30602-96-C-0049 
PE   - 62702F  
PR   - 4519  
TA    - 22  
WU  - 40 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
 
BBN Technologies 
10 Moulton Street 
Cambridge, MA  02138 
 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 
 
 

9.  SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
 
AFRL/IFGA 
32 Brooks Road 
Rome, NY  13441-4505 
 

10. SPONSORING / MONITORING 
      AGENCY REPORT NUMBER 
 
AFRL-IF-RS-TR-2002-29 
 

11. SUPPLEMENTARY NOTES 
 
AFRL Project Engineer:  Daniel J. Hague, IFGA, 315-330-1885 

12a. DISTRIBUTION / AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited.   
 

12b. DISTRIBUTION CODE 
 
 

13. ABSTRACT (Maximum 200 Words) 
This is a Systems Requirement Document for the Peer to Peer Information Systems Management to fulfill requirements 
of contract F30602-96-C-0049.  It covers detailed restraints and requirements identified by the RFP SOW or identified to 
date by BBN as necessary to develop a system architecture that allows SOW-required management information 
transfer to be a securable, object-orientated infrastructure that treats the communicating parties as peers and optimizes 
according to information utilization and usage characteristics.  A survey is included to provide the sponsor with a critical 
overview of the systems, standards, and technologies pertinent to the development of a generic peer-to-peer 
communications architecture for a network management system.    
 

15. NUMBER OF PAGES
85

14. SUBJECT TERMS   
Architecture Network Management System, Current Network Management Technologies,  
CORBA Integration  16. PRICE CODE

17. SECURITY CLASSIFICATION 
     OF REPORT 
 

UNCLASSIFIED 

18. SECURITY CLASSIFICATION 
     OF THIS PAGE 
 

UNCLASSIFIED 

19. SECURITY CLASSIFICATION 
     OF ABSTRACT 
 

UNCLASSIFIED 

20. LIMITATION OF ABSTRACT 
 
 

UL
NSN 7540-01-280-5500   Standard Form 298 (Rev. 2-89) 

Prescribed by ANSI Std. Z39-18 
298-102 



 

 i

 

Table of Contents 
 

1. EXECUTIVE OVERVIEW........................................................................................................... 1 
1.1. SCOPE................................................................................................................................................ 1 
1.2. DOCUMENT STYLISTIC CONVENTIONS .............................................................................................. 1 
1.3. INTRODUCTION AND OVERVIEW........................................................................................................ 1 
1.4. RELATED DOCUMENTS...................................................................................................................... 2 

1.4.1. Request for Proposal ................................................................................................................... 2 
1.4.2. BBN Proposal .............................................................................................................................. 2 
1.4.3. Market and Technologies Study................................................................................................... 2 
1.4.4. System Architecture ..................................................................................................................... 2 
1.4.5. Prototype Implementation Plan ................................................................................................... 2 

2. DOCUMENT STATUS.................................................................................................................. 2 
3. ENVIRONMENTAL REQUIREMENTS .................................................................................... 2 
4. MANAGEMENT INFORMATION REQUIREMENTS............................................................ 3 
4.1. MANAGEMENT APPLICATION OPERATIONS ....................................................................................... 3 

4.1.1. Status Monitoring ........................................................................................................................ 3 
4.1.2. Event Monitoring and Management ............................................................................................ 3 
4.1.3. Historical Data and Trend Monitoring........................................................................................ 3 
4.1.4. Control Commands ...................................................................................................................... 4 

4.2. TARGET COMPONENTS ...................................................................................................................... 4 
4.2.1. SNMP interfaces to IP Components............................................................................................. 4 
4.2.2. XBind ATM management interface .............................................................................................. 4 

5. SUPPORTING INFRASTRUCTURE REQUIREMENTS ........................................................ 5 
5.1. DISTRIBUTION ................................................................................................................................... 5 

5.1.1. Peer to Peer Distribution............................................................................................................. 5 
5.1.2. WAN Topology............................................................................................................................. 5 
5.1.3. Usage-based Distribution ............................................................................................................ 6 
5.1.4. Standard Distribution Framework............................................................................................... 6 

5.2. COLLATERAL SERVICES .................................................................................................................... 7 
5.2.1. Object-based datatypes and access.............................................................................................. 7 
5.2.2. Integrated Object Directories ...................................................................................................... 7 
5.2.3. Integrated Distributed Time Services .......................................................................................... 7 
5.2.4. Integrated Security....................................................................................................................... 7 
5.2.5. Manageability of System Components ......................................................................................... 8 
5.2.6. Graphic User Interface................................................................................................................ 8 
5.2.7. Storage......................................................................................................................................... 8 

6. EXECUTIVE APPENDICES........................................................................................................ 9 
6.1. REQUIREMENTS MATRIX................................................................................................................... 9 
6.2. ON-LINE REFERENCES ..................................................................................................................... 11 
SECTION 1 - CURRENT NETWORK MANAGEMENT TECHNOLOGIES.................................... 13 
7. OVERVIEW ................................................................................................................................. 13 
7.1. NETWORK MANAGEMENT PLATFORM FOR PROTOTYPE PEER-TO-PEER SYSTEM............................. 14 
7.2. CRITERIA......................................................................................................................................... 14 
7.3. CORBA INTEGRATION.................................................................................................................... 15 
7.4. SUPPORT FOR JARGONS ................................................................................................................... 15 



 

 ii

7.5. NOTES ON INITIAL DESIGN APPROACH............................................................................................ 16 
8. INDUSTRY LEADERS AND PRODUCTS ............................................................................... 17 
8.1. TIVOLI TME10................................................................................................................................ 17 

8.1.1. Environment............................................................................................................................... 17 
8.1.2. Framework Services .................................................................................................................. 17 
8.1.3. Event Services ............................................................................................................................ 18 
8.1.4. GUI ............................................................................................................................................ 18 
8.1.5. Security ...................................................................................................................................... 18 
8.1.6. Contacts ..................................................................................................................................... 18 
8.1.7. Tivoli References........................................................................................................................ 18 

8.2. HP OPENVIEW ................................................................................................................................ 23 
8.2.1. Environment............................................................................................................................... 23 
8.2.2. Framework Services .................................................................................................................. 23 
8.2.3. Event Services ............................................................................................................................ 23 
8.2.4. GUI ............................................................................................................................................ 23 
8.2.5. Security ...................................................................................................................................... 23 
8.2.6. Contacts ..................................................................................................................................... 24 
8.2.7. HP References ........................................................................................................................... 24 

8.3. BULL ISM/OPENMASTER................................................................................................................ 25 
8.3.1. Framework Services .................................................................................................................. 25 
8.3.2. Event Services ............................................................................................................................ 25 
8.3.3. Contacts ..................................................................................................................................... 25 
8.3.4. Bull References .......................................................................................................................... 25 

8.4. CABLETRON SPECTRUM .................................................................................................................. 26 
8.4.1. Environment............................................................................................................................... 27 
8.4.2. Framework Services .................................................................................................................. 27 
8.4.3. Interoperability with HP OpenView .......................................................................................... 28 
8.4.4. Event Services ............................................................................................................................ 28 
8.4.5. GUI ............................................................................................................................................ 28 
8.4.6. Security ...................................................................................................................................... 28 
8.4.7. Contacts ..................................................................................................................................... 28 

8.5. COMPUTER ASSOCIATES INTERNATIONAL INC. CA-UNICENTER ..................................................... 29 
8.5.1. Environment............................................................................................................................... 29 
8.5.2. Framework Services .................................................................................................................. 29 
8.5.3. Event Services ............................................................................................................................ 29 
8.5.4. GUI ............................................................................................................................................ 29 
8.5.5. Security ...................................................................................................................................... 29 
8.5.6. Contacts ..................................................................................................................................... 29 
8.5.7. CA References............................................................................................................................ 30 

8.6. SUN SOLSTICE ENTERPRISE MANAGER ........................................................................................... 31 
8.6.1. Environment............................................................................................................................... 31 
8.6.2. Framework Services .................................................................................................................. 31 
8.6.3. Event Services ............................................................................................................................ 31 
8.6.4. GUI ............................................................................................................................................ 31 
8.6.5. Contacts ..................................................................................................................................... 31 
8.6.6. Sun References........................................................................................................................... 32 

9. INNOVATIVE COTS SYSTEMS............................................................................................... 32 
10. STANDARDS ORGANIZATIONS............................................................................................. 32 
10.1. DISTRIBUTED MANAGEMENT(DISMAN) GROUP OF THE IETF (INTERNET ENGINEERING TASK FORCE)
 32 
10.2.THE IEEE COMMUNICATIONS SOCIETY (IEEE COMSOC)...................................................................... 32 
10.3. THE INTERNATIONAL FEDERATION FOR INFORMATION PROCESSING (IFIP) .................................... 32 
10.4.EWOS ................................................................................................................................................... 32 



 

 iii

10.5.NETWORK MANAGEMENT FORUM......................................................................................................... 33 
11. VENDORS’ USER GROUPS AND PARTNERSHIPS............................................................. 35 
11.1.HP OPENVIEW FORUM .......................................................................................................................... 35 
11.2.TIVOLI 10/PLUS ASSOCIATION............................................................................................................... 35 
12. CONFERENCES.......................................................................................................................... 35 
12.1. IM '97 THE FIFTH IFIP/IEE INTERNATIONAL SYMPOSIUM ON INTEGRATED NETWORK MANAGEMENT
 35 
12.2. DSOM, OCTOBER 28-30, 1996........................................................................................................ 37 
13. RESEARCH PROJECTS ............................................................................................................ 38 
13.1.THE SIMPLE GROUP ............................................................................................................................... 38 
13.2. ARPA ACTIVENETS PROJECT ......................................................................................................... 39 

13.2.1. Columbia University Management by Delegation Project ................................................... 39 
13.2.2. Columbia University NetScript Project................................................................................. 39 
13.2.3. MIT Active Networks Project ................................................................................................ 39 
13.2.4. University of Pennsylvania and Bell Communications Research SwitchWare Project......... 39 
13.2.5. BBN ActiveNets Project ........................................................................................................ 40 

13.3. NEW ARPA INITIATIVE IN ACTIVE NETWORKS............................................................................... 40 
13.4.NETWORK MANAGEMENT IN A MULTI-NATIONAL ENVIRONMENT........................................................ 40 
13.5.ACCORD PROJECT................................................................................................................................ 40 
14. TRENDS AND EMERGING TECHNOLOGIES ..................................................................... 40 
15. INDUSTRY COMMENTS .......................................................................................................... 41 
15.1.NETWORK COMPUTING ONLINE ............................................................................................................ 41 
15.2. COMMUNICATIONS WEEK ............................................................................................................... 42 
15.3.GARTNER GROUP................................................................................................................................... 43 
15.4. NETWORK MANAGEMENT MARKET ................................................................................................ 43 
16. WEB SITES FOR MORE INFORMATION:............................................................................ 44 
16.1.NETWORK MANAGEMENT ..................................................................................................................... 44 
16.2.SNMP NEWS ......................................................................................................................................... 44 
16.3.TECHWEB.............................................................................................................................................. 44 
SECTION 2 - PEER TO PEER INFORMATION SYSTEM MANAGEMENT ARCHITECTURE. 45 
17. EXECUTIVE OVERVIEW......................................................................................................... 45 
17.1. IDENTIFICATION .............................................................................................................................. 45 
18. DOCUMENT STYLISTIC CONVENTIONS............................................................................ 45 
18.1. DOCUMENT STATUS ........................................................................................................................ 45 
18.2. SYSTEM OVERVIEW......................................................................................................................... 45 
18.3. DOCUMENT OVERVIEW ................................................................................................................... 45 
19. REFERENCED DOCUMENTS.................................................................................................. 46 
19.1. CONTRACTOR SPECIFICATIONS ....................................................................................................... 46 
19.2. OTHER SPECIFICATIONS .................................................................................................................. 46 
20. SYSTEM-WIDE DESIGN DECISIONS .................................................................................... 47 
20.1. MANAGEMENT APPLICATION INTEGRATION.................................................................................... 47 
20.2. TARGET COMPONENTS INTEGRATION.............................................................................................. 47 
20.3. OBJECT-ORIENTED ARCHITECTURE ................................................................................................ 48 
20.4. DISTRIBUTION ................................................................................................................................. 48 

20.4.1. Distribution Between Peers................................................................................................... 48 



 

 iv

20.4.2. WAN Topology ...................................................................................................................... 48 
20.4.3. Distribution of Management Control and Information ......................................................... 49 
20.4.4. Standard Distribution Framework ........................................................................................ 49 
20.4.5. Coping with CORBA deficiencies ......................................................................................... 49 

20.5. SECURITY INTEGRATION ................................................................................................................. 51 
20.6. SYSTEM MANAGEMENT................................................................................................................... 51 
20.7. STORAGE......................................................................................................................................... 51 
20.8. GRAPHIC USER INTERFACE ............................................................................................................. 52 
21. FUNCTIONAL COMPONENT DESCRIPTION ..................................................................... 52 
21.1. BASIC MANAGEMENT OF SHARED OBJECTS .................................................................................... 54 
21.2. ASYNCHRONOUS ATTRIBUTE MONITORING .................................................................................... 55 
21.3. SHARED HISTORICAL CONTEXT DATA ............................................................................................ 55 
21.4. SHARED OBJECT CONTROL OPERATIONS COORDINATION............................................................... 55 
21.5. COLLECTIVE EVENT SOURCES......................................................................................................... 56 
21.6. COMPETING MULTIPLE SOURCES .................................................................................................... 56 
22. SYSTEM INTERFACE DESCRIPTION................................................................................... 57 
22.1. JARGON-BASED DISTRIBUTION........................................................................................................ 57 

22.1.1. Direct IDL Jargons ............................................................................................................... 59 
22.1.2. PASS-based Jargons ............................................................................................................. 60 
22.1.3. Jargon Management and Shared Managed Objects ............................................................. 66 

22.2. ASYNCHRONOUS ATTRIBUTE MONITORING INTERFACE.................................................................. 68 
22.2.1. Status_PASS API................................................................................................................... 69 
22.2.2. Status PASSREADER............................................................................................................ 69 
22.2.3. Status PASSWRITER............................................................................................................. 69 
22.2.4. STATUS_PASS IDLs ............................................................................................................. 69 

22.3. HISTORICAL DATA COLLECTION AND DISTRIBUTION...................................................................... 69 
22.3.1. TrendTable by Time .............................................................................................................. 71 
22.3.2. TrendTable by Device ........................................................................................................... 71 
22.3.3. TrendTable by Variable ........................................................................................................ 71 
22.3.4. Common Trend Datatypes IDL ............................................................................................. 72 
22.3.5. Trend Bulk IDL ..................................................................................................................... 72 
22.3.6. Trend Bulk Factory IDL........................................................................................................ 75 
22.3.7. Trend Subscription API......................................................................................................... 76 

22.4. ATTRIBUTE SNAPSHOTS .................................................................................................................. 76 
22.5. CONTROL COMMANDS .................................................................................................................... 77 

22.5.1. Control IDL........................................................................................................................... 77 
22.6. EVENT MONITORING ....................................................................................................................... 78 

22.6.1. Event PASSREADER............................................................................................................. 78 
22.6.2. Event PASSWRITER ............................................................................................................. 78 
22.6.3. EVENT_PASS IDL ................................................................................................................ 78 

22.7. COLLATERAL SERVICE INTERFACES................................................................................................ 79 
22.7.1. Directory Services................................................................................................................. 79 
22.7.2. Time Service.......................................................................................................................... 79 
22.7.3. Security Services ................................................................................................................... 79 
22.7.4. Management Services ........................................................................................................... 79 
22.7.5. Persistent Storage Services ................................................................................................... 80 

22.8. USER INTERFACES ........................................................................................................................... 80 
23. SYSTEM COMPONENT DESCRIPTION................................................................................ 80 
23.1. STATUS TRANSFER .......................................................................................................................... 82 

23.1.1. STATUS_PASS...................................................................................................................... 82 
23.1.2. STATUS_PASS Writer........................................................................................................... 82 
23.1.3. STATUS_PASS Reader.......................................................................................................... 82 
23.1.4. TME Unwrapper ................................................................................................................... 82 



 

 v

23.1.5. HPOV Wrapper..................................................................................................................... 82 
23.1.6. HPOV Unwrapper................................................................................................................. 82 
23.1.7. TME Wrapper ....................................................................................................................... 83 

23.2. TREND / HISTORICAL CONTEXT BULK TRANSFER ........................................................................... 83 
23.2.1. TME Unwrapper ................................................................................................................... 83 
23.2.2. HPOV Wrapper..................................................................................................................... 83 
23.2.3. HPOV Unwrapper................................................................................................................. 83 
23.2.4. TME Wrapper ....................................................................................................................... 83 

23.3. TREND / HISTORICAL CONTEXT SUBSCRIPTION TRANSFER ............................................................. 84 
23.3.1. TREND_PASS ....................................................................................................................... 84 
23.3.2. TREND_PASS Writer............................................................................................................ 84 
23.3.3. TREND_PASS Reader........................................................................................................... 84 
23.3.4. TME Unwrapper ................................................................................................................... 84 
23.3.5. HPOV Wrapper..................................................................................................................... 84 
23.3.6. HPOV Unwrapper................................................................................................................. 85 
23.3.7. TME Wrapper ....................................................................................................................... 85 

23.4. BASIC SHARED MANAGED OBJECT ATTRIBUTE SNAPSHOT............................................................. 85 
23.4.1. TME Unwrapper ................................................................................................................... 85 
23.4.2. HPOV Wrapper..................................................................................................................... 85 
23.4.3. HPOV Unwrapper................................................................................................................. 85 
23.4.4. TME Wrapper ....................................................................................................................... 85 

23.5. BASIC SHARED MANAGED OBJECT ATTRIBUTE CONTROL .............................................................. 85 
23.5.1. TME Unwrapper ................................................................................................................... 86 
23.5.2. HPOV Wrapper..................................................................................................................... 86 
23.5.3. HPOV Unwrapper................................................................................................................. 86 
23.5.4. TME Wrapper ....................................................................................................................... 86 

23.6. EVENT FORWARDING ...................................................................................................................... 86 
23.6.1. EVENT_PASS ....................................................................................................................... 86 
23.6.2. EVENT_PASS Writer ............................................................................................................ 86 
23.6.3. EVENT_PASS Reader ........................................................................................................... 86 
23.6.4. TME Unwrapper ................................................................................................................... 87 
23.6.5. HPOV Wrapper..................................................................................................................... 87 
23.6.6. HPOV Unwrapper................................................................................................................. 87 
23.6.7. TME Wrapper ....................................................................................................................... 87 

23.7. JARGON MANAGEMENT................................................................................................................... 87 
24. APPENDICES............................................................................................................................... 89 
24.1. ON-LINE REFERENCES ..................................................................................................................... 89 
24.2. GLOSSARY....................................................................................................................................... 89 

24.2.1. Peer to Peer .......................................................................................................................... 89 
24.2.2. Jargon ................................................................................................................................... 89 
24.2.3. Managed Object.................................................................................................................... 89 
24.2.4. Managed Object Instance or MOI ........................................................................................ 89 
24.2.5. Shared Managed Object........................................................................................................ 90 
24.2.6. Infrastructure Object............................................................................................................. 90 
24.2.7. Direct Object......................................................................................................................... 90 
24.2.8. Indirect Object ...................................................................................................................... 90 
24.2.9. PASS Object .......................................................................................................................... 90 
24.2.10. Collateral Services................................................................................................................ 90 
24.2.11. Authentication ....................................................................................................................... 90 
24.2.12. Authorization......................................................................................................................... 90 
24.2.13. Integrity................................................................................................................................. 90 
24.2.14. Privacy .................................................................................................................................. 91 
24.2.15. Replay Attack ........................................................................................................................ 91 
24.2.16. Denial of Service Attack........................................................................................................ 91 
24.2.17. Persistent Storage ................................................................................................................. 91 



 

 vi

24.2.18. Management of Management................................................................................................ 91 
24.2.19. Heartbeat .............................................................................................................................. 91 
24.2.20. XBind .................................................................................................................................... 91 

 
 

Table of Figures 
 
 
Figure 21-1 A Management System ....................................................................................53 
Figure 21-2 Managed Object Structure and Formal MIB Definition ..................................53 
Figure 21-3 Shared Managed Objects..................................................................................54 
Figure 22-1 Jargon-based Shared Managed Objects............................................................58 
Figure 22-2  Example PASS Jargon Usage .........................................................................65 
 
 
 
 
 
 
 
 
 
 



 

 1

 

1. Executive Overview 

1.1. Scope 
This document is submitted in fulfillment of requirement 4.1.2, and CDRL A005; from the 
Statement of Work for the Peer-to-Peer Information System Management Contract 
#F30602-96C-0049.  

1.2. Document Stylistic Conventions 
This document is published both in paper and hypertext formats.  Double underlines 
represent Hypertext links in the paper form.  The cross-references are identified inline, 
external references are collected in an Appendix,  On-line References.   
 

1.3.  Introduction and Overview 
This is the System Requirements Document for the Peer to Peer Information System 
Management program. It covers in detail the constraints and requirements identified by the 
RFP SOW or identified to date by BBN as necessary to develop a system architecture that 
allows SOW-required management information transfer: 

1. to be within a securable, object-oriented infrastructure that treats the 
communicating parties as peers, 
2. to be optimized according to the information's utilization and usage 
characteristics, 

 
The minimum subset of management information to be transferred comprises 

1. status monitoring 
2. events, traps and notifications monitoring and management 
3. control commands 
4. monitoring within an historical context 

 
The minimum subset of managed object classes to be covered comprises 

1. IP devices 
2. ATM devices. 

 

Some of the capabilities will be supplied by purchased components; other capabilities will 
be provided by BBN-developed components. The specification of the components and 
their responsibilities is provided in the Peer to Peer System Architecture document.  
 



 

 2

1.4. Related Documents 

1.4.1. Request for Proposal 
Solicitation # F30602-96-R-0049  
 

1.4.2. BBN Proposal 
P96-STD-395  

1.4.3. Market and Technologies Study 
BBN Technical Report 8180, Nov. 1996 
A report of the results of a survey covering the existing commercial off the shelf products 
and available technologies.  

1.4.4. System Architecture 
A specification of the system architecture based on the Market and Technologies Study 
results and this Requirements Document.  

1.4.5. Prototype Implementation Plan 
A specification of those aspects and components of the system architecture that shall be 
included in the proof-of-concepts prototype system.  
 

2. Document Status 
Delivered to Customer. 
Last updated on 05/15/97 12:34:57 PM by  Linsey O’Brien. 

3. Environmental Requirements 
The system shall operate on or in conjunction with at least the following platforms: 

• Solaris 2.5.1 
• HP Openview 
• Tivoli TME 

 
HP Openview was designated a required network management platform by the RFP 
Statement of Work sections 2.1 and 4.1.4. It is a legacy object oriented, remote network 
management system. It is not CORBA compliant. 
Tivoli TME was selected to be the second of two network management platforms during 
the Market and Technologies Study .  It was picked because it appeared to offer a solid, 
open technical foundation that also had significant COTS market share. It is CORBA 1.0 
and MIB-II compliant, but the CORBA framework is not directly accessible except under 
stiff licensing fees. Technical strategies for dealing with these issues are described in the 
System Architecture. 



 

 3

Per conversations with the client, Rome Labs, The Peer to Peer Systems Architecture shall 
not be CMIS- or CMIP- based, although integration with CMIS components shall not be 
prevented. 
 

4. Management Information Requirements 
The following requirements are the management information factors driving the design of 
the Peer to Peer Network Management System Architecture.  
 

4.1. Management Application Operations 
The system shall support integrating significant management information input and output 
necessary to coordinate peer management operations. Such management information types 
included status, event, and statistical monitoring and management, and issuing control 
commands.  
 

4.1.1. Status Monitoring 
Status information is the heart of day to day operations. Monitoring status of critical 
components is the starting point for most management procedures. Integrating two peer 
systems' status information is primarily a matter of distributing updates among peers when 
the status of monitored components changes. This may be done through several 
distribution mechanisms: status polls, event management and monitoring the results of 
control operations. Which mechanism is used depends on how the network management 
systems in question classify the status information. Integrating those mechanisms is 
discussed in the  Usage-based Distribution section below. 
 

4.1.2. Event Monitoring and Management 
Event information is often simply status change information and as such is distributed 
through an asynchronous notification mechanism. It is included here as a distribution 
variant of status monitoring. However, it can also convey other information with similar 
distribution characteristics.  
 

4.1.3. Historical Data and Trend Monitoring 
Historical data are generally accessed for one of two reasons: 
 

1. Monitoring in Context: Data are collected and analyzed in real time in order to 
make network management decisions regarding routing, whether or not to dial-up 
additional bandwidth, when to run particular applications, and so forth. Although 
this function emphasizes current performance, it is generally not sufficient to 
merely query and receive a single number---such as the current utilization of a 



 

 4

particular link---since such data are meaningless unless placed within the broader 
context of trends and past performance. 
 
2. Performance analysis: Data are collected and analyzed off-line in order to assess 
the health of the network, do capacity planning, bill users, and so forth. This 
function stresses historical data from which trends and use patterns must be 
extracted. The quantities of data may be very large, but their transfer is not very 
time-sensitive since performance analysis is usually conducted in batch mode 
during off-peak hours. 

 
In either case, there are both implied distribution and storage requirements, covered in the  
Usage-based Distribution and  Storage sections below. 
 

4.1.4. Control Commands 
Control commands are what complete the management loop and while they are the most 
powerful operations in the management system array, their fundamental distribution and 
storage requirements are trivial subsets of the monitoring operations. They do have, 
however, significant  manageability and  security requirements described in the relevant 
sections below.  
 

4.2. Target Components 
Monitoring and control operations require target components and those components further 
refine the type and usage of the operations and their management information. 
  

4.2.1. SNMP interfaces to IP Components 
The system shall allow information and functions exported by SNMP V2 network 
management systems to be incorporated. 
The system shall support the networking MIBs defined according to the IETF SNMP V2 
standards to the extent that the peer network management system being integrated supports 
such MIBs. Other MIBs, if defined according to STD 17 / RFC 1213 or RFC 1902, may be 
integrated if the management information system allows MIBs and managed object classes 
to be added. 
 
 

4.2.2. XBind ATM management interface 
The system shall allow information and functions exported by XBind network 
management systems being developed at Columbia University to be incorporated.  
 



 

 5

5. Supporting Infrastructure Requirements 
The following factors are requirements derived from the need to integrate with other 
existing or planned technologies.  
 

5.1. Distribution 
The primary issue in integrating peer management systems is defining how their 
information distribution systems will be connected such that information from one system 
can easily and appropriately flow to one or more others. The following requirements affect 
connecting two or more management systems' distribution infrastructure.  
 

5.1.1. Peer to Peer Distribution 
The system shall integrate management information and functions from a variety of 
interfaces such that the operation of one management system shall not be required in order 
for the other to operate. However, if the operators of each system so allow, one system can 
monitor, control, exchange historical data with, and field events from the other system. The 
first peer system integrated shall be based on HP Openview. The second peer system 
integrated was selected as a part of the study phase and is the Tivoli TME system.  
 

5.1.2. WAN Topology  
As networks expand, they are increasingly having to interoperate over Wide Area Network 
(WAN) boundaries with peer networks. Such peer networks are run by peer organizations 
using their own network management systems. Peer management systems are often not 
located within the same [extended] LAN because peer business organizations managed by 
peer but different management systems generally do not share a LAN.  Support for 
management information distribution across such borders and WAN gateways is common 
and therefore required. 
One common exception to this rule of peer-management situations used to be the rule.  It 
occurs when a single organization is trying to migrate gradually from one management 
system to another.  Often the two management systems are peers during the transition.  
This was the most common peer management situation when most networks were 
extended LANs.  Even if they had WAN components they were still managed by a single 
business organization.  Given that the presumption that one system was replacing the other, 
the systems were only temporarily peers, and market share was changing hands, most 
network management vendors opposed peer management configurations that would make 
it easy for another vendor to replace them and their customers generally condoned the 
resulting technical, architectural and financial barriers to such configurations. 
Such situations will continue to exist; large company / large market share vendor 
opposition to peer management architectures may be defused by allowing peer 
communications only across WANs.  This will restrict the potential takeover targets to 
larger organizational groups and minimize the risk that a competitor will gain a toehold.  



 

 6

As smaller companies will want to gain such a toehold, they too should support the WAN 
distribution requirement. 
A third driving force for WAN distribution is the nature of ATM equipment management 
interfaces (another Peer to Peer system requirement,  see the section on XBind / ATM 
components below ). In many cases the ATM switches do not provide direct interfaces to 
the relevant operations and data and network management systems (such as XBind) export 
the management data. When such systems setup ATM connections they may have to do so 
across a WAN channel because that is often the initial link between organizations 
deploying ATM equipment, much like a lightweight heaving line is used to pull a hawser 
across or electrical fish tape is used to pull cable. 
 

5.1.3. Usage-based Distribution 
The system shall provide various mechanisms in order to distribute management 
information and function based on the datatype and access usage of the management 
information concerned. The usage types shall include representatives of each of the RFP 
SOW categories plus any others judged necessary to demonstrate the utility of the Peer to 
Peer System Architecture. 
The first usage type supported shall be for monitoring and control that can be bandwidth-
intensive, either because the component information is volatile and a synchronous API 
would be inefficient or because the response is potentially very large. The second usage 
supported shall be for non-bandwidth intensive monitoring and control commands. The 
third type supported shall be for large bandwidth intensive data sets. The fourth usage 
supported shall be for events, alerts, traps or other ephemeral and asynchronous 
notifications. 
For example, the two historical monitoring functions  described earlier impose distinct 
distribution requirements.  Monitoring in Context requires a synchronous mode in which a 
current measurement, as well as some statistics (e.g. very recent history, median, 5th and 
95th percentiles) that allow it to be placed within the appropriate context, are queried and 
received.  Performance Analysis  requires an asynchronous mode in which users subscribe 
to particular historical measurement data sets that are potentially quite large, and receive 
them periodically (e.g. daily). 
 

5.1.4. Standard Distribution Framework 
While proposing a collection of usage-optimized communication 'jargons' to distribute 
management control and data among peer systems, we do not want to create a set of single-
use spaghetti strands drooping between systems. Therefore, we consider a distribution 
standard necessary to minimize the number and methods of low-level mechanisms used for 
distribution. These low-level standard capabilities will then be utilized in a variety of 
standardized ways to support usage-optimized communication between the management 
systems. Such a standard must also support the object-oriented requirement covered in  
section 4.2.1 . 
 



 

 7

5.2. Collateral Services 
Hooking together information system distribution infrastructures often generates 
requirements based on the integration process and also requires additional services not 
directly or immediately concerned with mangement information transfer operations 
although they often make it possible.  Such collateral services requirements are addressed 
in this section and include object-oriented development environments, distributed directory 
(naming) services, distributed time services, security and access control services with 
network-wide coverage, managed object management and configuration services, etc.  
 

5.2.1. Object-based datatypes and access 
The system shall support object-based datatypes and provide object methods so as to 
support access to management information from a wide variety of network components 
and management applications without having to explicitly specify each individual 
interface. 

5.2.2. Integrated Object Directories 
The system shall provide an integrated object directory for all managed objects shared 
among peer systems such that it can be managed from each system using a standard 
identifier.  Such a directory may be manually populated and its naming conventions based 
on local agreements. 

5.2.3. Integrated Distributed Time Services 
The system shall provide an integrated time service for management operations, historical 
information and logs such that timestamped information from one source may be 
compared and sorted with timestamped information from another peer system.  Such 
integration may be provided by a manually generated mapping between local time zones 
and local agreements about clock usage and time providers. 
 

5.2.4. Integrated Security 
The system shall define and provide hooks for security mechanisms provided by Odyssey 
Research Associates at all necessary levels. In particular it shall provide hooks that allow 
management systems to use modular security mechanisms that: 

• authenticate the source and preferably the destination of status updates, 
control commands, events, and historical data. 
• authorize the client application which issues control commands or which 
attempts to supply input to a management application 
• ensure the integrity of such management traffic 
• preserve management information integrity 

 
Authentication, Authorization and Data Integrity mechanisms shall be supplied by the 
designated security partner, Odyssey Research Associates. 



 

 8

Derived requirements arising from the need to extend integrated security to WAN 
environments via common security mechanisms such as firewalls will be considered 
Management of Security of Management component issues and again, hooks only will be 
defined and provided.  
 

5.2.5. Manageability of System Components 
The system itself shall have a management interface such that an authorized person can 
review the management system configuration information and make necessary changes. 
The management interface shall integrate component management system management 
interfaces and BBN supplied integration components, using, as much as possible, the same 
or similar GUI environments. Installation and other similar situations which are prone to 
bootstrapping dependency issues may use methods other than an integrated GUI to 
minimize the user effort and learning curve.  
 

5.2.6. Graphic User Interface 
The system GUI shall be usable on the same screen at the same time as the GUI supplied 
by the network management platform (HP Openview or Tivoli TME). Where appropriate, 
the system GUI should integrate with that of the network management platform so that, for 
example, system functions can be invoked via additional menu items or menus that appear 
as part of the network management platform's GUI 
 

5.2.7. Storage 
In addition to distributing management information, each type of usage has distinct storage 
requirements. For example, the two historical monitoring functions, Monitoring in Context 
and Performance Analysis  described earlier and the Event Logs implied by event 
monitoring also have storage requirements. 
 

1. In the case of monitoring current measurement information in context, the 
information becomes obsolete fairly rapidly. Thus, only the most recently queried 
information must be cached, and only for a limited period. To integrate two peer 
systems means aligning cache purging procedures or providing a buffering 
mechanism. 
 
2. In the case of historical performance data or event logs, potentially large 
amounts of data must be stored for potentially extended periods of time. This may 
be done in a centralized or a distributed database. Transparency to the end-user is 
an important requirement. To integrate two peer systems means providing 
consistency and update mechanisms. 

 
 



 

 9

6. Executive Appendices 
 

6.1. Requirements Matrix 
The following matrix matches requirements listed in the Rome Lab's RFP  
Statement of Work. 
 

Section Type Requirement 

1.1 Arch Peer to Peer NM Entity 
Comms 

 Arch Monitoring, including 
Status 

 Arch Control 
 Arch Fault Isolation 
 Arch Multiple NM Entities 
 Arch Info Flow Optimization 
 Design Rome Testbed integration 

Demo 
2.1 (also 4.1.1,  4.1.2) Study &  Design P2P communications 
(also 4.1.1)  S&D Applicable Standards 
(also 4.1.1) S&D Applicable Existing 

Technologies 
(also section  4.1.4) Design HP Openview 
(also section  4.1.4) Design non-HP NM platform 
3.1 Arch End to End Resource 

Mgmt. 
 Arch Integrated Security 
 Arch ATM as Network 

Resources 
4.1   
4.1.1 Sched Deliver Study Results 
4.1.2 Sched Deliver Requirements Doc 

Req Delivery Plan 
4.1.3 Sched Deliver Arch Doc Doc 

Delivery Plan 
4.1.3.1 Arch Definitions of NM Entities: 

Functionality & 



 

 10

Responsibilities (e.g. 
collection, storage, 
analysis/inference, display 
from 3.1 

4.1.3.2 & 
 4.1.3.4 

Arch Definition of NM Entity 
Inter-relationships & 
Mechanisms (e.g. equal 
peers, hierarchical and the 
Mgmt. Info formats) 

4.1.3.3 Arch Definition of System I/F to 
Peer Mgmt. System 

4.1.4  Deliver Implementation 
Plan (Design Doc.) 

 Design Exchange Mgmt 
Monitoring & Control Info. 

 Design HP Openview Usage 
 Design non-HP NM platform 

Usage 
4.1.5 Sched Implement Design sections) 
4.1.5.1 Sched Deliver minimum HP and 

non- HP platform 
configurations to                     
Rome 1 month after 
approval 

4.1.5.2 Sched Deliver Phased Releases of 
Impl Starting with 4.1.5.1 

4.1.6 Sched Two Proof of Concept 
Demos 

4.1.6.1 Sched & Impl Demo Exchange of 
Monitoring Info, including 
Status 

4.1.6.2 Sched & Impl Demo Exchange of 
Monitoring Info, including 
Status and                           
Control Info 

 Sched Deliver Source, 
Executables, Libraries and 
Tools (all properly licensed) 
using 3 or fewer BBN 
personnel in 5 days or less. 

4.1.7 Sched Reports 



 

 11

4.1.7.1 Sched Monthly Status Reports 
4.1.7.2 Sched Funding Status Reports as 

required 
4.1.7.3 Sched Research Results and 

Evaluations as Scientific & 
Technical Reports, and 
Tech. Info Reports, as 
required plus a final S & T 

4.1.7.4 Sched Technical Status 
Presentations 

4.1.7.5 Sched Attend Technical 
Interchange Meetings 

   
   

 
 
 

6.2. On-line References 
The following are the on-line references elsewhere in this document; they will become 
stale over time and should be treated as such by January, 1998. In some cases, locally-
stored snapshots have been made to minimize loss of the reference.  Paper copies of 
snapshots of non-project documents will be provided at the end of the project . 
P2P Study/Survey 

http://morpheus.bbn.com/p2p/rcsDocs/nm.html . 
P2P System Architecture 

  http://morpheus.bbn.com/p2p/rcsDocs/sysarch.html . 
XBind 

  http://www.ctr.columbia.edu/comet/xbind/xbind.html . 
SNMP V2 [IETF] 

http://www.ietf.org/ids.by.wg/snmpv2.html . 
SNMP V2 [BBN] 

http://morpheus.bbn.com/p2p/rcsDocs/snmpv2.html . 
IETF MIBs [IETF] 

 
• RFC 1902 which defines the SMI, the mechanisms used for describing and 
naming objects for the purpose of management. 
• STD 17, RFC 1213 defines MIB-II, the core set of managed objects for the 
Internet suite of protocols. 

 



 

 12

• SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and S. 
Waldbusser, "Structure of Management Information for version 2 of the Simple 
Network Management Protocol (SNMPv2)", RFC 1902, January 1996. 
• M.T. Rose (editor), Management Information Base for Network Management of 
TCP/IP-based internets, Internet Working Group Request for Comments 1213. 
Network Information Center, SRI International, Menlo Park, California, (March, 
1991). 

 
Odyssey Research Associate 

http://www.oracorp.com/ . 
——— 

 



 

 13

 

Section 1 - Current Network 
Management Technologies 

 

7. Overview 
This survey of network management tools is submitted in fulfillment of requirement 4.1.1 
and CDRL A004 from the Statement of Work for the Peer-to-Peer Information System 
Management Contract #F30602-96C-0049. 
There are two primary goals for this survey: 
First, to provide the sponsor with a critical overview of the systems, standards, and 
technologies pertinent to the development of a generic peer-to-peer communication 
architecture for network management systems (NMS). 
Second, to select an appropriate network management tool to use in the prototype peer-to-
peer network management system to be developed in the next phase of the project. In the 
Statement of Work, the sponsor identified HP OpenView as one of two systems to use in 
the prototype; the choice of the other system is to be recommended by BBN, as a result of 
this survey. 
 
This survey was conducted in order to meet several objectives for the critical overview of 
the current state of network management systems:  

1. To determine what software products and technology are widely available 
including determining which products are leaders in the market place.  

2. To determine which companies and products are providing leading edge or 
innovative solutions.  

3. To determine what organizations are actively involved in developing standards.  
4. To identify projects at universities or other organizations involving leading edge 

research in the area of network management.  
The survey addresses each of these areas and concludes with a recommendation for the 
network management system to be used in the prototype peer-to-peer communications 
system to be designed and implemented in the next phase of this project. 
As network management technology and tools are rapidly evolving, this survey has been 
delivered in two forms: the standard, hard copy report and a document on the world wide 
web. In the latter form, the survey includes references to relevant web sites from industry, 
education, and research and standards organizations. In that form, the survey is a "living" 
document, providing up-to-date information more current than the publication date of the 
hard copy document. As the location and availability of web documents may change over 
time, all referenced web pages have been copied to a server at BBN where they will be 
maintained for the life of the contract. Each of these web pages contains the location of the 
original web page.  



 

 14

7.1. Network Management Platform for Prototype Peer-to-Peer System 
We recommend Tivoli as the Network Management Platform to integrate with HP 
OpenView in the Prototype Peer-to-Peer System to be developed in the next phase of this 
project.  

7.2. Criteria 
The criteria for selection of a second network management system for the prototype phase 
of the project are both technical and non-technical. 
The non-technical criteria include: 

• Availability -- Can the system be obtained by other organizations that might be 
interested in making use of, or pursuing further research on, our work? 

• Support -- Is the system currently supported? Is the vendor committed to support 
and improve the product for the forseeable future? 

• Manageability -- Is the vendor available for technical support? (On this point, 
vendors were judged by how well they responded to requests for information for 
this survey.) 

• Environment -- Can the system be run on a Sun or HP workstation? 
• Performance -- Will the system perform reasonably well, not only in a prototype 

environment, but also in a real-world network? 
We first applied the above non-technical criteria, primarily through literature searches and 
searches of online information, to choose a small number of systems from the many 
network management systems available. 
In applying the non-technical criteria, we decided to restrict further consideration to the 
leading COTS vendors. These vendors meet the criteria of availability and support. 
Further, these vendors have demonstrated that their products can perform in real-world 
environments. All the vendors considered deal with performance limitations by 
subdividing the overloaded domain and installing additional managers. Managing such a 
configuration may be difficult in very large networks, but this strategy is very common. 
Finally, and perhaps most importantly, integration of a widely available COTS product in a 
peer-to-peer management scheme will validate this methodology in a way that freeware or 
customized software could not. 
After narrowing our choices to a few leading COTS vendors, we arranged for presentations 
by vendors and studied the product technical manuals. 
The primary technical criteria for selection of a network management platform for the 
prototype phase of the project are: 

• Ease of, or support for, CORBA integration, including: 
• CORBA wrappers for non-CORBA, proprietary object APIs 
• ORB interoperability for CORBA compliant object APIs 
• IDL back-end support for CORBA compliant object APIs for C++ 

• Support for the ‘jargons’ (events, status, control, trend) outlined in the proposal 



 

 15

7.3. CORBA Integration 
One of the purposes of this projct is to demonstrate how the old "request/response" 
approach to distributing management information is insufficient to cover the full range of 
management activities. We will use CORBA to create "request/response" objects (for 
control information), composite "stream" objects (for status and other monitoring), and 
other jargon objects that are deemed necessary. These different types of objects will be 
able to coexist in a CORBA framework, as will be demonstrated in the prototype phase of 
the project. 
Any secondary platform, in addition to the HP OpenView platform required by the 
sponsor, should provide a CORBA V2.0 compliant developer's environment for on-site or 
third-party applications. CORBA will be used as the basis for the manager-to-manager 
integration. Although a CORBA interface is not strictly necessary, additional work would 
be required to "CORBAsize" objects to be imported/exported and integrated across 
platforms. As HP OpenView does not offer a CORBA API, the interface to this platform 
will include CORBA wrappers for shared objects. 
Assuming a CORBA requirement, the leading COTS products are ranked as follows, based 
on their application interfaces: 

• Tivoli TME10 (native CORBA) 
• Cabletron Spectrum (proprietary, open, object-oriented APIs, with promised future 

support for CORBA) 
• Computer Associates Unicenter (proprietary, object-oriented APIs, but no CORBA 

support) 
• Sun Solstice (CMIS API; plans to support Java API, but no immediate plans to 

support CORBA) 
• Bull OpenMaster (CMIP APIs) 

7.4. Support for Jargons  
We studied the Application Programming Interfaces of the various tools in an attempt to 
decide how well they would support the jargon approach. Questions such as "Does the 
NMS provide Event processing?" "How does the NMS allow application developers to 
define objects so that we can translate GETs and SETs?” “Do we have to map GET-RESPs 
into Events on the second system because the second system didn't issue a GET-REQ?" 
became selection criteria when we attempted to see how well our initial system 
architecture would be supported. In this preliminary architecture, managers will exchange 
a subset of the jargons as follows: 
Events will be be exchanged by mapping an EVENT message from NMS 1's managed 
object through a CORBA Event Stream into an EVENT message in NMS 2. 
Status will be exchanged by mapping a sequence of GET-RESPs, which are replies to 
NMS 1's polls, into a MIST stream object, and then mapping these into a sequence of 
GET-RESPs to NMS 2's events/alarms/alerts. 
Control will be supported by forwarding, via a proxy object, the SET-REQ from NMS 1 to 
NMS 2, which will then send it as the "real" object. 



 

 16

The exchange of trend data will be supported by forwarding a GetIFFLog from NMS 1 
through a CORBA transport object to NMS2, then forwarding the RespIFFLog back 
through a (potentially different) CORBA transport object.  
CORBA Transport objects are different than CORBA Management objects in that a 
Management object's IDL defines a MIB-based Request/Response interface, and a 
Transport object's IDL typically defines stream or other transport-based characteristics. 
Transport objects distribute a particular type of management information (the MIB's event 
in the case of the Event Stream, the MIB's status attribute in the case of the MIST, the IFF 
file in the case of the Trend transporter). Transport objects will enable the prototype 
system to work around the Request/Response communication paradigm that CORBA 
normally uses, while staying within the CORBA framework for integration purposes. 
In summary, the network management platform chosen must allow 

• the definition of MIB-based gateway objects in the network management platform 
and matching CORBA components, and 

• the definition of transport-based application objects that convey Events, Status, 
Control and Trend information, between the source NMS MIB object (or 
application in the case of the Trend Logs), and the destination application. 
Destination applications include Logger for Events, Monitor/Display for Status and 
other monitoring items, and Trend Analysis/Logger for Trend Logs. 

Several platforms support definition of MIB-based objects in their native mode. Only one 
platform, Tivoli, is CORBA-native. Definition of a CORBA half-gateway for non-
CORBA-native platforms is platform-specific. This support will have to provided for HP 
OpenView, which is not CORBA-native. The OpenView integration will prove the concept 
for MIB-based, non-CORBA objects. 

7.5. Notes on Initial Design Approach 
The Tivoli ORB supports both WAN directory services and WAN object 
reference/invocation. 
Tivoli's ORB is only CORBA 1.2 compliant because they feel that their security interface 
cannot co-exist with the CORBA V2.0 Internet Inter-ORB Protocol (IIOP). Tivoli is also 
awaiting standardization of the Common Facilities Transaction Service as they feel that it 
is critical for network management. Finally, they do not support Context arguments on 
CORBA interface calls, although this is not essential for the peer-to-peer system. 
There are two design approaches for integrating the Tivoli system: 

• Wrap Tivoli objects, much like any other non-CORBA objects. 
• Attempt to implement the jargons (e.g. MIST) in ORB terms. 

The first choice implies that Tivoli is not much better than other choices considered in the 
survey. Even though it is CORBA-compliant, a CORBA v1.2/CORBA v2.0 wrapper or 
gateway will have to be provided. On the positive side, a CORBA v1.2/CORBA v2.0 
gateway is probably the easiest of the wrapper-based jargons to design and implement. 
The second approach means the the MIST must be ported to Tivoli and the other jargons 
must be developed. Tivoli does provide a fairly standard IDL compiler, but there is no 
mention of persistence or replication in their documentation. The directory service and 
access are both purportedly WAN-based. 



 

 17

We propose to use the second approach as our initial design; if this approach proves 
infeasible, the results can be incorporated into the first approach. This approach will give 
us (and Tivoli) a clear idea of what is required of a CORBA-compliant NMS by third party 
developers and will give the client an indication of what CORBA/CORBA interactions 
entail. Eventually, we hope that a Tivoli CORBA/CORBA wrapper would define the API 
that would run on top of IIOP for Tivoli CORBA V2.  

8. Industry Leaders and Products 
There are a small number of companies that account for most of the market share in 
network management tools. The leading contenders and their product lines are:  

• IBM/Tivoli/TME10  
• HP/OpenView  
• Bull/ISM OpenMaster  
• Cabletron/Spectrum  
• CA/Unicenter  
• Sun/Solstice Enterprise Manager  

Each of the following sections includes a reference to the company's home page and a 
reference to the product home page.  

8.1. Tivoli TME10 
(http://www.tivoli.com) 
(http://www.tivoli.com/tivevery/prodhm.html) 
Tivoli Systems was acquired by IBM in early 1996. The IBM NetView product has been 
replaced by the Tivoli suite of products. 

8.1.1. Environment  
The currently supported platforms include: 

• Solaris 2.3 or 2.4 
• HP/UX 9.0 through 9.05 

8.1.2. Framework Services  
Tivoli Systems, a subsidiary of IBM, offers a CORBA 1.2 compliant Advanced 
Developer's Environment. The ORB was developed by Tivoli and is known as the Tivoli 
Management Framework (TMF). APIs are either developed by linking to C runtime 
libraries or by linking to client stubs generated by compiling standard CORBA IDL. 
Currently, only BOA-style stubs are offered. 
Tivoli has been active in the OMG, but they claim to be focusing on system management 
standards, although their submissions can be considered generic approaches to policy 
definition and propagation, object instance repository/directory services, object instance 
grouping (known as the Collection Service), and operation scheduling. 
Tivoli handles WAN and scalability issues by employing multiple Tivoli Management 
Region (TMR) servers interconnected with a private protocol. The TMR holds the Tivoli 
Naming Registry (TNR), an object instance repository, and a directory service. 



 

 18

Tivoli provides extensions to IDL (TEIDL) that support: 
• Implementation inheritance from multiple processes across the network. 
• Instantiable class, abstract class, meta-class, and mix-in class specification. 
• A distributed Security model with the ability to set per method/per object ACLs 

using both simple TMF and DES algorithms. 
• A rich set of method activation policies including shared/unshared server, external, 

and multi-threaded. 
• Initialization and installation features to automate application installation into a 

live, running system. 
• A compiler option for strict OMB/CORBA compliance 

Tivoli also provides a number of collateral services (both Common Object Services and 
Common Facilities Architecture services), particularly a Transaction service, in addition to 
the Naming and Security services mentioned above. 

8.1.3. Event Services  
Tivoli provides the Tivoli Event Console (TEC), which is a rule-based correlation and 
filter engine with a Sybase back-end that communicates with Event Adapters (both Tivoli 
supplied and custom) and the TMR (which also provides simple thresholding/blocking). 
Up to six events per second can be handled. 

8.1.4. GUI  
Tivoli's Desktop Services offers X11R5, Motif 1.2, and Windows 3.1-compatible 
presentation API, but it assumes a request/response model (although callbacks are 
supported). The main components are: 

• Dialog Specification Language/Compiler 
• TME desktop display manager and command/callback engine 
• Desktop services library 
• Gadget library 

8.1.5. Security  
Kerberosized RPC and an optional data encryption service. 

8.1.6. Contacts 
This review is based on a presentation and demo given by Tivoli (Lyssa Robinson) at BBN 
Planet on November 1, on subsequent phone conversations with Lyssa Robinson, on the 
tutorial manual Introduction to Tivoli/ADE V3.0, and on the rest of the ADE 
Documentation set as specified.  

• Contact information for Lyssa Robinson, systems engineer, is as follows: 408-369-
3930, 408-369-3939 (fax), lyssa.robinson@tivoli.com, in the Campbell, CA office. 

8.1.7. Tivoli References 
The following white paper was provided by Tivoli. 



 

 19

8.1.7.1. Tivoli Management Environment and CORBA  

The purpose of this paper is to discuss Tivoli's perspective with regard to the OMG 
CORBA specification. Tivoli has been closely involved in the evolution of the OMG 
specifications within the OMG. Our activities include direct contributions on the 
evolution of the security specification that is being defined for use within a CORBA 
environment (the importance of this will be made clear in the sections that follow), 
the evolution of the CORBA specification itself, and the acceptance within the OMG 
of the Common Management Facilities specification (derived from the work of the 
X/Open Systems Management Technical Working Group to define a set of 
management services based on the CORBA specification). Based both on our direct 
involvement in a number of the OMG working groups as well as our commitment to 
base our product on relevant OMG specifications, Tivoli has long been a supporter 
of the goals of the OMG, and much of its current core technology is based on the 
work of this group. 

Tivoli Management Environment and CORBA 1.2 

With the 2.0 release of the Tivoli Management Environment, Tivoli became the first 
Distributed Systems Management software provider to deliver a solution which is 
compliant with the OMG CORBA 1.2 specification. The specification has been 
proposed and accepted as a standard for all common ORB systems. The 
implementation of this standard as part of the Tivoli Management Framework has 
enabled customers to utilize TME to manage very large scale heterogeneous computing 
environments with unprecedented ease. 

CORBA 1.2 only specifies the architecture of the ORB model. That is, it specifies the 
provision of the ORB interfaces but it does not specify the ORB implementation. The 
ORB could for example, be implemented as part of the operating system or as a stand 
alone process. The TME framework services provide a server-based ORB, which 
means that the TME ORB is a continually running program, separate from the 
operating system. The TME ORB communicates with both the server and the client 
through separate stubs and skeletons via an inter-process communication facility. A 
secure remote procedure call (RPC) use to invoke operations on remote objects 
provides both principal authentication and authorization. CORBA 1.2 also does not 
specify an interoperability protocol, thus there is no specification that an ORB 
developer can implement to with any confidence that one implementation can inter-
operate with another. 

The Tivoli framework services support all the major CORBA 1.2 components 
including an Object Request Broker, a Basic Object Adapter, an extended IDL 
compiler with both ANSI C and bourne shell language bindings, an interface repository 
and the interfaces required for a Dynamic Invocation Interface (DII). The TME 
framework services do not, however, currently support optional context objects. The 
CORBA 1.2 specification of context objects is obscure; and there is significant 
disagreement as to its use and benefit in the standard. 

In addition to these components the Tivoli Management Framework supports 
additional services required for secure and scaleable distributed systems management 



 

 20

solutions. These services provide support for security and transactions at the ORB 
layer. For example, each ORB is fully authenticated from a central security server, so 
that an ORB running on one Tivoli managed node will only accept ORB requests from 
some other ORB in the Tivoli Managed Region (within the security domain of the 
same central security server). ORB communication can optionally be encrypted to 
preserve data integrity and privacy. Finally, ORB requests occur within the security 
context of the administrator making the management request, and this information is 
used to verify that an administrator has the necessary security credentials to perform 
the operation (i.e. invoke the requested method on the specified object) in the TMR. 

Tivoli also includes support for transactions, which allow method invocations to occur 
within a top-level or nested transaction context. Within this context, any modifications 
to any object attribute data is staged for a later commit or abort operation. This 
mechanism guarantees that persistent object attribute data from objects that reside on 
more than one ORB can be maintained in a consistent state. Without this capability the 
recovery actions that must be provided when distributed operations are not able to 
complete successfully in the distributed environment would be extremely cumbersome, 
expensive, and error-prone. 

What's new in CORBA 2.0? 

Unlike CORBA 1.2, CORBA 2.0 is actually a family of specifications, and support a 
number of different capabilities. The set of specifications include core capabilities, 
support for interoperability, support for a C++ binding, and support for enhanced 
portability. 

The most interesting extension to the core capabilities offered by CORBA 2.0 is a 
Dynamic Server Interface. Of course, the most visible CORBA 2.0 specification is the 
support for interoperability, defined by the Internet InterOperability Protocol (IIOP), 
which defines the wire-level protocol that allows an IIOP-compliant ORB provided by 
one vendor to inter-operate with a second IIOP-compliant ORB provided by another. 
The C++ binding defined by CORBA 2.0 allows a CORBA 2.0-compliant IDL 
compiler to emit interface definitions using C++ instead of C, so that the C++ class 
library support built into most C++ development environments can be used on IDL-
defined interface definitions. Finally, the enhanced portability services provides 
additional object life cycl e services that increase the chances that interfaces defined by 
one IDL compiler can be ported to another. 

Of these, perhaps the only CORBA 2.0 specification that's particularly useful to DSM 
solutions would be the support for interoperability. The remainder of the CORBA 2.0 
services are primarily of interest to general-purpose ORB vendors, because they 
increase the likelihood that an application developed on one ORB from one vendor 
would easily port to a second ORB from another vendor. Since this is not the 
environment that Tivoli's ORB is used in, the particular value of CORBA 2.0 to 
Tivoli's customers is more as an indicator of Tivoli's commitment to CORBA-based 
standards initiatives and to Tivoli's commitment to continue to invest and support its 
ORB-based technology. 

Tivoli's position with regard to CORBA 2.0 



 

 21

As noted above, two base services essential for DSM is support for a fully secure 
environment and the error recovery inherent in a distributed transaction environment. 
CORBA 2.0 addresses neither of these two key services, and represents the biggest 
stumbling block for Tivoli moving to CORBA 2.0. To fully explain Tivoli's position 
with regard to CORBA 2.0, it's important to address both sets of issues above (the 
specifics of CORBA 2.0 support _AND_ Tivoli's long-term commitment to CORBA). 
Let's address the second issue first. 

When Tivoli first set out to develop a framework, one of the key requirements was an 
object-based technology that could cleanly and portably run across hardware and 
operating systems from multiple vendors. The only technology which meets these 
requirements is CORBA. Therefore, Tivoli adopted the then-current version of 
CORBA (1.2) as its base standard both for its ORB implementation and as the 
programming environment for both its management services and its management 
applications. Of course, that version of the CORBA specification did not include 
support for security, transactions, implementation, etc., and Tivoli's implementation of 
CORBA 1.2 is an "extended implementation" in that it includes support for these 
services. 

When CORBA 2.0 was released, Tivoli evaluated the various additional services 
included in CORBA 2.0 and determined that the core, C++, and enhanced portability 
services of CORBA 2.0 did not add sufficient additional benefit to Tivoli to merit the 
development expense of evolving to the new version of the specification. The one 
feature that did, on the surface, merit that expense was support for interoperability 
through the IIOP. However, there was a catch. As noted earlier, Tivoli had to extend 
the CORBA 1.2 specification to include support for security and transactions, based on 
our strongly-held belief that these services were essential to a robust, enterprise-wide, 
scaleable systems management framework. While CORBA 2.0 provides a number of 
useful additions to CORBA 1.2, it does not yet include support for these two essential 
services. If Tivoli were to embrace the CORBA 2.0 specification, Tivoli would (again) 
have to extend the implementation of its ORB to provide support for these services. 
Based on this observation, the benefit of interORB interoperability would be lost once 
the additional support for security and transactions was added back in (since no other 
IIOP-compliant ORB would understand how to talk to Tivoli's ORB and visa-versa). 
So, from Tivoli's perspective, the CORBA 2.0 specification is incomplete, doesn't 
provide sufficient benefit for the effort involved, and doesn't justify evolving its entire 
customer base over to a new version of our ORB for such minimal benefit. 

What about interoperability? 

In many cases customers express interest in being able to inter-operate between Tivoli's 
ORB and an ORB from some other vendor. This is often the driving force behind 
questions regarding our plans with CORBA 2.0. As should be clear from statements 
above, even if Tivoli were to make TME CORBA 2.0-compliant, our security 
extensions would prevent another, external ORB from communicating with a TME 
ORB and visa-versa. In effect, the Tivoli security services perform the same function 
that a firewall performs in an network connected to the Internet.  



 

 22

While IP, in general, provides for cross-network interoperability, the firewall prevents 
unauthorized access to nodes within the firewall for those users that lack the 
appropriate permissions. Therefore, CORBA 2.0 compliance would not address the real 
customer requirement: to be able to have applications developed using one ORB 
technology access objects within the TME and visa-versa. For those customers with 
this requirement, there is another approach. 

Our recommendation for such interoperability is to define gateway objects that provide 
interface definitions accessible from within one ORB environment that can then make 
method calls to analogous objects in the other. In this way, the gateway object can be 
given the necessary security context to properly invoke the necessary operations within 
the TME environment and send the results back.  

Likewise, a similar gateway object can be defined that intercepts method calls to TME 
objects in the TME environment and then makes the analogous methods calls to objects 
in the non-TME ORB environment and forwards the results of these calls back to the 
caller within the TME environment. This is an approach that maintains the necessary 
security and transaction context within TME yet provides whatever level of 
interoperability the application needs. A number of customers with this requirement 
have used this approach with satisfactory results. 

What's the next step? 

The OMG is currently working on both a security specification and a transaction 
service for inclusion in a future version of the CORBA specification. When that future 
version of the CORBA specification is available, Tivoli is committed to evolving to 
that (more complete) version of CORBA. Tivoli has been and will continue to be a 
driving force and significant supporter of the work on the CORBA specification. Today 
Tivoli is delivering distributed systems management solutions that are based on a 
subset of the CORBA 2.0 specification and in the cases detailed above we have gone 
beyond this specification with our extensions for security and transactions services. It 
is a combination the these services and the CORBA base specification which have 
proven to be instrumental in successfully solving the problems of distributed systems 
management.  

8.1.7.2. Interview with Tivoli CEO, Frank Moss 
In an interview in Computer Reseller News, July 8, 1996, n691 p128(1), Frank Moss, 
Tivoli CEO, had the following comment about the future of network-computing 
management: 

"But we believe that the ultimate direction of network-computing management is 
application management, whereby customers manage their entire environments from 
the point of view of the applications they are trying to deploy. After all, it's the 
applications that are really the heart of their business. We've created an interface 
specification called AMS-for applications management specifications-which connects 
TME with applications and application-development environments."  

This is a trend that has been observed in looking at several network management tools, 
namely an emerging emphasis on application-to-application level management in an effort 
to address the question:  "how are my applications running?" In order to answer this 



 

 23

question, management tools must merge information over a wide range of devices 
operating at different points in the network/system hierarchy, addressing everything from 
"are my transmission lines operational?" or "are my routers congested?" to "does my 
system have enough storage?" or "is my system CPU-bound?". This spans some very 
complex management issues (network management alone has certainly not been 
"resolved") and it is unclear whether companies can deliver on their goals in this area. 

8.1.7.3. Interview with Tivoli CEO, Frank Moss 
In an interview published in InfoWorld, March 25, 1996 v18 n13 p45(2), Frank Moss was 
questioned about whether Tivoli would maintain its independence after being acquired by 
IBM. Moss pledged that Tivoli would remain "cross platform and agnostic about operating 
systems" and that Tivoli would continue "to work with IBM's databases and platforms 
exactly the same way we work with other vendors now" (i.e. before the merger). 
Given that the merger has been relatively recent (February, 96), it remains to be seen 
whether Tivoli continues to maintain its platform independence. 

8.2. HP OpenView 
(http://www.hp.com) 
(http://www.hp.com/nsmd/ov/main.html) 
HP OpenView is the leader in market share in network management tools. As specified in 
the Peer-to-Peer Information Systems Statement of Work, HP OpenView has been chosen 
as one of the network management platforms that will be used in the peer-to-peer prototype 
system. 

8.2.1. Environment  
The supported platforms are: 

• HP-UX 9.x and 10.x 

8.2.2. Framework Services 
Openview is an open, proprietary, object-oriented framework whose objects are strictly 
Managed Object instances. An object's definition is a combination of its map and other 
graphic representation information and its SNMP MIB definitions. Integration is seen 
mainly as the integration of Managed Object Agents and a set of independent applications 
driven by data collected from the Agents. 

8.2.3. Event Services 
SNMP traps support. 

8.2.4. GUI 
OSF/Motif. 

8.2.5. Security 
User ID rudimentary access control.  



 

 24

8.2.6. Contacts 
This review is based on the HP OpenView Windows Application Design and Style Guide, 
Programmer's Guide and Reference, Programmer's Guide (a separate manual emphasizing 
SNMP concepts), Integration Utilities and the OpenView Network Node Management web 
pages on the Developer's Toolkits and Integration Certifications Requirements. 

• Ginny Johnson 617-221-5286 
• Magali Medina 617-238-8508 

8.2.7. HP References 

8.2.7.1. HP OpenView Users' Forum Survey  
 
From INTERNETWORK February 1996 v7 n2 p11(1):  

A survey of members of the HP OpenView Users' Forum reveals the high degree of 
frustration of network managers over the shoddy customer support provided by HP. 
About half of the respondents, however, said that they will stay committed to the 
product for one to three years for various reasons, such as the need to recoup 
investments and skepticism about whether there is a better product. The survey also 
noted what network managers really want. These include a scalable and distributed 
architecture, built-in reporting capabilities, better event handling functions and more 
controllable auto discovery, improved SNMP polling features, easy to install products, 
and a truly open network management system.  

The complaints I'm talking about aren't isolated -- the horror stories are consistent, told 
over and over again by an overwhelming majority of respondents. And our survey 
reached over one-fourth of the OpenView Forum membership, meaning that the results 
truly reflect the wider population.  

What do these managers want besides better customer support?  

* First and foremost, a scalable solution with a distributed architecture -- a product that 
doesn't get more and more complicated to use when there are multiple users and 
multiple maps.  

* Second, they want built-in reporting capabilities so they can make sense out of the 
data they've collected without spending months writing scripts and feeding data into 
third-party reporting tools.  

* Third on the list are better event handling capabilities -- filtering, consolidating and 
correlating alarms. In addition, managers want auto discovery that is more controllable, 
SNMP polling features that work better, and products that are easier to install.  

* Last, but not least, they'd like an open management system that is truly open -- 
supporting the ability to easily write to an event log and trigger events from a log -- and 
a common database (a real relational database) instead of several binary flat files.  

Is this too much to ask? Interestingly, not one respondent asked for some pie-in-the-sky 
object-oriented system that supports CMIP and GDMO modeling...  



 

 25

No one asked for the moon or a product that handles everything from soup to nuts. Just 
simple, reliable SNMP data collection, with information stored in an accessible place, 
and a client-server architecture that can be distributed in a scalable fashion. Is that 
really too much to ask?  

8.3. Bull ISM/OpenMaster  
(http://www.bull.com) 
(http://w3ibt.bull.fr/ism/) 
Bull is a recent arrival in the U.S. market, but is strong in European and Asian markets.  

8.3.1. Framework Services 
Integration is seen as a matter of defining managed objects in ISO's OSI GDMO. There is a 
client/server architecture, but communication with components is CMIP-based. 

8.3.2. Event Services 
Supports CMIP events. 

8.3.3. Contacts 
This review is based on a presentation given by Bull representatives Albert Fitussi and 
Michael Maloof, and on the Integrated System Management Administrator's Guide.  
Contact information is as follows: 

Michael Maloof (508.294.6129, MMaloof@bull.com) 
Albert Fitussi (508.294.5048, a.fitussi@bull.com) 

8.3.4. Bull References 

8.3.4.1. Comments from Network World 
From Network World April 15, 1996 v13 n16 p19(1):  

ISM/OpenMaster is a late arrival in the US market, although it is used by 500 
organizations worldwide; it competes with HP's OpenView, IBM's SystemView and 
Tivoli, and Computer Associates' CA-Unicenter.  

8.3.4.2. Bull/Amdahl Agreement  
From CommunicationsWeek March 18, 1996 n601 p38(1): 

Abstract  

Groupe Bull and Amdahl recently reached partnership agreement that will dramatically 
expand the market for Bull's ISM/OpenMaster enterprise management software suite, 
while completing Amdahl's product offerings. The partnership provides Amdahl with a 
complete solution, enabling it to compete with recently merged IBM and Tivoli 
Systems. The mergers highlight the necessity of a strong partnership strategy to remain 
competitive in the network market. However, the trend toward partnership raises 
interoperability issues. Network managers cite product interoperability as the most 
important consideration in purchasing distributed systems management tools. Many 
network managers have not yet deployed a framework for distributed systems 



 

 26

management, even though over half of the network managers responding to a recent 
survey reported that they would choose HP's OpenView. A clear winner in the network 
market is yet to emerge.  

Full Text  

Two weeks ago, I received a call from a PR person who wanted to set up a time for me 
to speak with executives from Amdahl Corp. about its distributed systems management 
strategy. My first reaction was: "What distributed management strategy?" I wasn't 
aware that the company that made a name for itself by giving IBM a run for its money 
in the mainframe market had a strategy. It does.  

The foundation of that strategy is a five-year, renewable partnership with Groupe Bull 
to market the Paris computer vendor's ISM/OpenMaster enterprise management 
software suite worldwide.  The pact makes sense for both companies. Bull gains access 
to Amdahl's customers on this side of the Atlantic as well as its sales force.  

Amdahl, concerned about what type of an impact an IBM-Tivoli union is likely to have 
on its customer base, now has a comprehensive solution that manages PCs, work 
groups, Unix systems, mainframes, data and voice networks as well as enterprise-wide 
security and database systems.  

The Amdahl-Bull deal, following on the heels of the IBM-Tivoli merger, further 
exemplifies that no vendor can survive in today's complex, distributed networking 
world without a strong partnership program or strategy.  

But as companies form partnerships, network managers are increasingly concerned 
with how well the products interoperate with each other. A recent survey of more than 
700 IS/network managers conducted by Boole & Babbage revealed that most important 
criterion for evaluating distributed systems management products is interoperability.  

The level of interoperability between products from different vendors is the most 
important criterion for buying DSM tools, said Saverio Merlo, senior vice president of 
marketing at Boole & Babbage, a provider of management software. The second most 
important is scalability and the third is vendor support.  

Another important survey finding was relatively few respondents had deployed a 
framework for distributed systems management in their organizations. Deploy means 
actually using that platform throughout an organization.  

When the managers were asked which framework they had chosen, not deployed, 54 
percent said Hewlett-Packard's HP OpenView would be their building block.  

Though it might seem that OpenView, the market leader in the enterprise management 
arena, won the contest, the race is not over. OpenView has a commanding lead, but 
indications are that the fastest-growing net management platform is IBM's NetView for 
AIX. It remains to be seen what type of impact IBM-Tivoli will have on the distributed 
systems management market. And others are jockeying for position. 

8.4. Cabletron Spectrum 
(http://www.cabletron.com/) 
(http://www.cai.com/products/uctr.htm) 



 

 27

Cabletron's Spectrum product has been widely acclaimed in industry publications for the 
intelligence of its network trouble shooting strategy. Cabletron has put particular emphasis 
on the problem of isolating the root cause of a network problem, such as a failed line or 
router, from the hundreds or thousands of related failure reports that a single point failure 
may cause. However, as Cabletron is a major provider of network hardware, such as 
routers, it is more focused on providing network management tools for its own hardware, 
than on providing a truly open architecture suitable for supporting third party applications. 

8.4.1. Environment 
Spectrum is available on at least the following platforms: 

• HP/UX 10.01 on HP9000 
• Solaris 2.4/2.5 on Sparc 

8.4.2. Framework Services 
The SPECTRUM system is officially unbundled to provide users and developers with 
components and toolkits. The two primary components of the SPECTRUM product are the 
SpectroSERVER, which communicates with the managed devices, and the SpectroGRAPH 
client, which provides the user interface graphical display functions. The SpectroSERVER 
contains a modelling engine, called the Virtual Network Machine (VNM), an object-
oriented database (OODB) and a multi-product Device Communication Manager (DCM) 
for communicating with managed devices.  
The SpectroSERVER communicates with the SepctroGRAPH client via the 
SpectroSERVER API (SSAPI). The SSAPI is implemented in a separately available toolkit 
which provides third-party applications with an interface to the data maintained in the 
SPECTRUM database and managed devices. In order to employ a model and export it, the 
developer must register hardware-address-founded, MIB-based model definitions with 
Cabletron. The model definition is similar to the CORBA interface definition and database 
schema combined. It is used to communicate management information internally and to 
make it persistent by storing it in a Sybase-based database. There is a Model Type Editor 
toolkit available. 
The SpectroServer API is a published, but proprietary interface. The API is not CORBA 
compliant, but Cabletron expects to release a CORBA-compliant API within the year. 
The Device Communication Manager, which is part of the SpectroSERVER, is the 
component that communicates with managed devices. It supports GETs and SETs via 
SNMP, RPC, and IPC. In addition, there is an External Protocol Interface (EPI) to the 
Device Communications Manager that can be used to write applications which 
communicate with devices through non-standard protocols. Editors and toolkits are 
available to facilitate building access to new network components. 
The interfaces to the rule-based configuration and topology engine in the VNM include the 
Inference Handler API and the Command Line [User] Interface which allows simple rule 
definitions. 
There is no replication of model data between VNMs, although the alarms triggered by 
events are distributed via the proprietary Distributed Data Manager (DDM). This manager 
combines a 20:1 compression ratio with TCP/IP transport to ensure that all 
SpectroGRAPH clients are notified with minimum impact on the network. 



 

 28

The heart of the VNM is the NetMap-like Virtual Network Machine in which the 
components are connected according to defined and inferred relationships based on 
hardware addresses. VNM topologies can be saved as an open, proprietary info-base 
format, which is the only import format. The topologies are also exportable in a number of 
formats including ASCII files, Sybase, and Oracle. 
Configuration fields in a MIB, such as the configuration fields used by routers, can be 
defined in a special Configuration Manager package and both saved and downloaded to 
managed systems. 

8.4.3. Interoperability with HP OpenView 
Interoperability with HP OpenView is achieved via a Spectrum Element Manager (SPEL) 
Gateway, which will be available as a product at the end of December 1997. However, 
Cabletron does not intend to support this product. 

8.4.4. Event Services 
Events and Traps are seen as symptoms and are not propagated by the VNM framework, 
unless they pass through the primary filters, at which point they are considered Alarms. 
This event handling is part of Spectrum's efforts to isolate network failures and minimize 
reporting of multiple events and traps due to a single point of failure. Events are easily 
exported from the VNM, but importing events is more difficult. Two approaches would be 
to declare events as primitive alarms or to develop a C++ importing wrapper to map the 
events into a model definition in the VNM. 

8.4.5. GUI 
The SpectroGraph client is an Xwindows/Motif compliant GUI. There is also a command 
line interface. 

8.4.6. Security 
According to the Spectrum Administrator's Reference Manual, security in Spectrum is 
primarily an access control/authorization scheme similar to the SNMP V2 concept. It 
requires additional crypto and network security services to provide authentication, privacy, 
and data integrity. 

8.4.7. Contacts 
This review is based on a presentation and demo given by Cabletron on November 6, 1996, 
the Configuration Guide for Spectrum Enterprise Management 4.0Rev0, SPMAs 2.1, 
Spectrum Element Manager 1.01 and StackView 1.0 [June 1, 1996] and other 
documentation as noted. 

• Matthew Palis (603.337.2145) 
• Larry Benson 
• Carmelita Lawrence (clawrence@ccmailpc.ctron.com, 603.337.1489) - visit 

coordinator 



 

 29

8.5. Computer Associates International Inc. CA-Unicenter 
(http://www.cai.com) 
(http://www.cai.com/products/uctr.htm) 
CA-Unicenter is the second largest computer software company in the world (from 
Software Magazine, April, 1996). Digital Equipment Corporation recently sold their 
Polycenter technology for network management to CA-Unicenter.  

8.5.1. Environment  
CA-Unicenter is supported on at least the following platforms: 

• HP-UX 9.x and 10.x 
• Solaris 2.3, 2.4 and 2.5 

8.5.2. Framework Services 
Interoperability with OpenView is achieved by including a licensed copy of the OV 
Operations Center and the SNMP Platform, or for CAI’s TNG (The Next Generation), 
using the Software Developer's Kit (SDK), and using the World View API.  Objects are 
defined in the proprietary Common Object Repository of the Enterprise (CORE) via the 
Class Wizard tool and the Enterprise Management API (which has multiprotocol data 
transport). 
TNG is not CORBA compliant although it claims to be open and CORBA is listed under 
the Adoption of Standards on the CA-Unicenter feature checklist. Application developers 
have to use the World View API to define interfaces, not IDL, according to the CA-
Unicenter TNG paper by Dr. Elizabeth Nichols. 

8.5.3. Event Services 
The Event Manager is central event console with distributed, filtered input events. A 
proprietary Common Communications Interface is used to transport the events to the Event 
Manager. 
The OV Intelligent Agent can send events to the Event Manager. 

8.5.4. GUI 
OSF/Motif  for current version. 
Virtual reality business process simulation/model for TNG. 

8.5.5. Security 
Kerberos API, plus authorization and ACLs; complies with National Computer Security 
Center Green Book rules. 

8.5.6. Contacts 
This review is based on discussions with Claudia Peters, the Faulkner Information Services 
report prepared for CAI, the CA-Unicenter TNG Software Development Kit brochure, and 
other marketing brochures as noted (received from Rick Schrader). 

• Claudia Peters (617.251-5538) is the technical contact. 



 

 30

• Rick Schrader (703.709.4762) is the sales rep for Army related projects. 
• John Petracek (703.709.4590) is our new sales rep and the sales rep for Air Force 

related projects. petracek@mnsinc.com 
• Kyle Hodges (516.342.2376) is the original marketing contact assigned to us. 

8.5.7. CA References 
Digital's POLYCENTER technology has been acquired by CA-Unicenter 
CA-Unicenter will support Digital's Polycenter customers with a probable migration to 
CA-Unicenter TNG (The Next Generation). 
From LAN Magazine , August 1996, v11 n8 p18(1):  

Computer Associates (CA, Islandia, NY) has made it official: Its eagerly awaited CA-
Unicenter TNG is shipping and will be hitting the market six months ahead of the 
scheduled ship date of early 1997... 

This successor to CA's enormously popular Unicenter product includes many new 
features and tools that provide management functionality for every enterprise network 
resource, including databases and applications. "This is the only product that focuses 
on managing processes from end-to-end--mainframe to Internet and back" Kumar says. 

The product does this managing through Jasmine, an architecture based on CA's object-
oriented database for multimedia applications. Through this model, information about 
resources can be stored and monitored, allowing administrators to keep better track of 
widely distributed systems. This architecture also provides an open, extensible 
environment that is highly scalable and customizable. 

Because of its single, centralized repository, Unicenter-TNG manages everything from 
one console, regardless of the platform. It also supports the major network 
management products, including HP OpenView, Sun Net Manager, and Cabletron's 
Spectrum. 

The product also includes a three-dimensional user interface, creating an intuitive view 
of system resources, including hardware, software, security, databases, and Internet 
resources.  



 

 31

8.6.  Sun Solstice Enterprise Manager 
(http://www.sun.com) 
(http://www.sun.com/solstice/em-products/network/ent.man.html) 
Solstice Enterprise Manager Version 2.0 superceeds and incorporates the earlier SunNet 
Manager, Site Manager and Domain Manager. The Solstice Enterprise Manager can be 
unbundled into server and client (user interface) components. The server component 
supports third party applications through the portable management interface (PMI) which 
is based on CMIP over TCP/IP. Sun plans to provide a Java management API to their 
server by next spring, but they have no plans for supporting a CORBA interface for third 
party applications. 

8.6.1. Environment  
The supported platforms are: 

• Solaris 2.4 or 2.5 

8.6.2. Framework Services 
Solstice Enterprise Manager is based on technology acquired from Netlabs, Inc. The 
Enterprise Manager includes server and client components. The server component 
communicates with the managed devices and with the client component; the client 
component provides the user interface. Third party applications can interface to the server 
using the same protocol as is used by the Solstice Enterprise client and server components. 
This interface uses CMIP over TCP (CMOT) based and is not CORBA compliant. A Java 
interface should be available in Q3 '97, but there are no plans to support a CORBA 
interface to the server. The Enterprise Manager includes proprietary object definition 
interfaces and installation tools (GDMO compliler, RPC CMOT transport). The Enterprise 
Manager is Omnipoint compliant. 
The instance repository is hierarchically structured (MOIs are assigned to a manager who 
in turn can be assigned to a manager). However two Management Information Systems 
(MIS) can act as reciprocal managers/agents for each other. 
The API (for third party applications is GDMO/CMIS based. 

8.6.3. Event Services 
The RequestDesigner (part of the Nerve Center) is a tool used to define an event filter and 
assign an action to be launched on match. 

8.6.4. GUI  
The Enterprise Manager includes a Motif-compliant user interface. 

8.6.5. Contacts 
This review is based on a presentation by and discussion with Tom Bialaski and Bob 
Ganley on 12 Nov 1996 and on the What's new in: Solstice Enterprise Manager 1.2 
Developer's/OEM Release notes. [Feb 29, 1996] 
Contact information is as follows: 

Tom Bialaski, Systems Engineer (508.442.0577), tom.bialaski@east.sun.com 



 

 32

Bob Ganley, Senior Account Manager (508.442.0352), robert.ganley@east.sun.com 

8.6.6. Sun References  

8.6.6.1.Sun Solstice Enterprise Manager  
(http://www.sun.com/solstice/em-products/network/ent.man.html)  
Solstice Enterprise Manager shares common technology with SolsticeTM Domain 
ManagerTM, SolsticeTM Site ManagerTM, and SolsticeTM SunNet ManagerTM. 
Applications and agents written to the Solstice SunNet Manager (SNM) APIs will run 
on Solstice Enterprise Manager. With SolsticeTM Cooperative ConsolesTM receiver 
included, it can receive management information sent by Solstice Domain Manager, 
Solstice Site Manager, or Solstice SunNet Manager  thereby enabling it to act as a 
manager of managers in a network management hierarchy.  

9. Innovative COTS Systems 
In addition to the market share leaders, we have researched companies with smaller market 
share, but innovative solutions, notably SMARTS InCharge. 
(http://www.smarts.com/company.html) 
(http://www.smarts.com/products/incharge_datasheet.html) 
InCharge is one of the few management platforms that can efficiently correlate large 
numbers of symptoms into probable causes. InCharge uses a patented algorithm based on 
coding theory to lookup problem causes based on the current set of symptoms. This gives a 
(claimed) performance improvement of a factor of 100 over other systems, i.e. 1000 
symptoms/sec versus 10 symptoms/sec (Tivoli). 
The InCharge platform works as follows: Raw information is collected from devices using 
SNMP, CORBA, or a user supplied interface. The raw data is compared against thresholds 
to generate symptoms. All the symptoms are input into the correlating engine to determine 
any problems. Problems can be sent up a hierarchy of InCharge platforms to the ultimate 
Network management applications, such as a trouble ticket or network map application. 
BBN is using SMARTS InCharge as part of a Related DARPA project, DIRM. 

10. Standards Organizations 

10.1. Distributed Management(disman) group of the IETF (Internet 
Engineering Task Force) 
(http://www.ietf.org/html.charters/disman-charter.html) 

10.2. The IEEE Communications Society (IEEE ComSoc) 
(http://engine.ieee.org/comsoc/) 

10.3. The International Federation for Information Processing (IFIP) 
(http://www.ifip.or.at/) 

10.4. EWOS  
(http://www.ewos.be/index.htm)  



 

 33

EWOS is a European forum of users, manufacturers, implementors and procurers, working 
to achieve openness in Information and Communications Technologies. They publish a 
Guide to Open Systems Specifications: Systems and Network Management Technologies 
(http://www.ewos.be/nm/gmtech.htm).  

10.5. Network Management Forum  
(http://www.nmf.org ) 
NMF exists to promote and accelerate the worldwide acceptance and implementation of a 
common, service-based approach to the management of networked information systems. A 
non-profit corporation, NMF is funded by its members, including organizations that 
consume information and telecommunications services, organizations that provide 
networked services, and organizations whose telecommunications and computing products 
are used to create services.  
The Network Management Forum recently announced that it was realigning its work 
programs in this press release. 
 

NMF Realigns Work Programs to Match Investment Trends  

All deliverables to carry NMF brand name 

Barcelona, Spain, October 29, 1996. NMF today announced a restructuring of its work 
in order to remain closely aligned with the investment priorities of service providers 
and product developers. Work programs will now be grouped into three focused areas: 
service management, network management and platforms & technology. The 
agreements, specifications and outputs from NMF have also been restructured, to 
permit faster publication to the industry. 

"Part of NMF's success has always been our willingness to regularly tune programs as 
market requirements evolve and to quickly adapt as competitive pressures impact 
members' priorities," commented Keith Willetts, NMF President. "Although we have 
been working in all three areas for some time, they have not always had equal priority. 
These changes should significantly improve NMF's effectiveness and make it easier for 
developers and implementors to find the integrated solutions they require." 

Recent focus groups conducted by NMF indicated three major areas where service 
providers are making significant investment in management systems: 

• Improving process flow-through to achieve service management excellence; 

• Managing an enlarging network infrastructure to meet rising demand for 
bandwidth, 

• Migrating from proprietary, legacy systems to integrated, "off-the-shelf" distributed 
computing platforms. 

In the area of Service Management, NMF will continue to play a lead role, as it has 
since introducing its SMART program two years ago. Based on this work, service 
providers have identified areas where industry agreements are needed to achieve 
process flow-through -- particularly in areas such as global alliances and Internet 
Service Providers. Six teams are active in the service management area, addressing 



 

 34

issues such as trouble ticketing, performance reporting, ordering, service configuration, 
and billing. 

Network management, the starting point of NMF in 1988, has continued to evolve. 
Initially the main driver for network management standards was supplier independence 
but today, the ability to manage efficiently across multiple networking technologies is 
the critical requirement. Work done by other groups, to address the management of 
ATM, Frame Relay and SDH/SONET, has to be integrated in order for service 
providers to achieve the service flexibility they need to stay competitive. 

In its Platforms & Technology program, NMF will merge two parallel activities: the 
definition of distributed computing platforms (known as SPIRIT), and the definition of 
management middleware specifications, including interworking specifications and 
development tools. By bringing these together, NMF members should be better able to 
apply "off-the-shelf" technology to management systems. 

With clarification of its work programs, NMF is also making changes to the way it 
publishes its agreements and specifications, and the names they are given. In the past, 
outputs bore the name of the program that produced them (such as OMNIPoint), all 
deliverables will now be marketed under the NMF name. Each document will also be 
clearly labeled as to the subject matter that it covers. 

Three types of deliverables will come from NMF's Service Management and Network 
Management programs: NMF Requirements specifications, NMF Design and Analysis 
specifications, and NMF Solution Sets. Requirements documents, which will now be 
made available to non-members, spell out the business agreements for exchanging 
management information. Design and Analysis documents, detail an implementation-
neutral Information Model that can be implemented in multiple standards 
environments. Solution Sets, introduced in 1995, capture implementation-specific 
technical interface specifications, removing all options and virtually guaranteeing 
interoperability between implementing systems. Six Solution Sets (released under the 
OMNIPoint name in 1995) have been introduced with more expected in early 1997. 

Two types of deliverables will come from NMF's Platforms & Technology program. 
The SPIRIT specification, which is jointly sponsored by NMF and X/Open, will retain 
its name, and will continue to be updated as service providers endorse the use of 
market-available computing standards. NMF Component Sets, also introduced in 1995, 
provide detailed management middleware specifications. Four Component Sets (also 
released under the OMNIPoint name) are already available, and two more are expected 
to complete shortly. 

"Taken together, these changes will enable us to provide highly specific solutions in 
areas where the industry requires a standards-based solution while providing a clear 
and consistent name to the market, " explained Elizabeth Adams, NMF Managing 
Director. 

NMF is a non-profit, global consortium providing the communications industry with a 
forum for developing open, integrated solutions for managing large, complex networks. 
NMF offers a range of programs, publications and specifications that make it easier for 



 

 35

companies to reduce costs, improve service quality and introduce new products and 
services faster. 

Over 180 of the world's leading service providers, equipment suppliers, software 
developers and private network operators from 28 countries work together as NMF 
members.  

 

11. Vendors’ user groups and partnerships 

11.1. HP OpenView Forum 
(http://www.hp.com/nsmd/ov/main.html)  

On an annual basis, OpenView Forum collects members' product requirements, asks 
members to rank the priority of each requirement, and forwards the requirements and 
rankings to appropriate HP OpenView technology providers for their response.  

11.2. Tivoli 10/Plus Association 
(http://www.tivoli.com/TENPLUS)  

We believe the 10/Plus Association represents a watershed in the management 
industry. All too often projects fail to reach their full potential due to the lack of a 
comprehensive enterprise management solution. The problem is, no single vendor--not 
even the combination of IBM and Tivoli--can solve all of your enterprise networking 
computing needs.  

By working smarter, and making a major investment in cooperatively creating products 
and standards with our customers, Tivoli Systems and our 10/Plus partners are focused 
on changing the way vendors work together. These industry-leading partners are 
working jointly with Tivoli to create a sophisticated level of integration with our 
network computing product suite, and comprehensive support programs, so that there 
can be no doubt that the 10/Plus Association is at the forefront of solving the real 
customer problem of today--lack of integration.  

12. Conferences  
The IFIP and IEEE hold three series of conferences: 

• IM, held in odd years, the next will be in May 1997,  
• NOMS, Network Operations and Management, held in even years, and 
• DSOM, Distributed Systems Operation and Management, a small workshop group 

which meets annually, most recently in October 1996 

12.1. IM '97 The Fifth IFIP/IEE International Symposium on Integrated 
Network Management 
(http://engine.ieee.org/comsoc/IM/) 
"Integrated Management in a Virtual World" 
May 12 - 16, 1997  



 

 36

... the fifth biennial IFIP/IEEE International Symposium on Integrated Network 
Management. The theme for 1997 is Integrated Management in a Virtual World, 
focusing on the pivotal role that integrated network management plays in worldwide 
information networks and distributed systems that cross geographical and political 
boundaries. Indeed, these networks extend beyond physical boundaries to support 
virtual corporations, virtual LANs, inter-enterprise internetworking, real and virtual 
service management, outsourcing and electronic commerce. This premier Symposium 
continues the highly-regarded series sponsored by IFIP Working Group 6.6 on 
Network Management and the IEEE Communications Society Committee on Network 
Operations and Management.... This program addresses the increasing interest in 
overall management solutions across all types of networks, enterprise communication 
systems, distributed computing systems and applications.  

History of the IFIP/IEEE Symposium on Integrated Network Management (IM) 

Known by the acronym "ISINM" until this year's change to "IM," which is much easier 
to say, this continues to be the premier biannual industry event for Network Managers. 

Since 1989, the Symposium has provided a central technical exchange forum for the 
research, standards, development, systems integrator, vendor and user communities in 
network management. With the global information infrastructure growing at an 
exponential rate, IM '97 promises to build on the successes of previous symposia and 
provide a unique opportunity for exploring integrated management solutions with a 
diverse international community. 

The symposium series has demonstrated increasing interest in overall management 
solutions across all types of networks, enterprise communication systems, distributed 
computing systems and applications. Such comprehensive network management is of 
continued interest for the next symposium: integrating data and telecommunication 
networks, from narrowband to broadband, terrestrial to satellite, fixed to mobile, used 
for common as well as advanced multi-media communication. 

Beginning with our first symposium in 1989, each ISINM program and its related 
theme has reflected the historic events in integrated network management, indeed has 
helped shape them. 

1989: Improving Global Communication Through Network Management 

When we held the first ISINM in Boston in 1989, the need for comprehensive network 
management capabilities was apparent after major disasters had occurred in the 
telecommunications industries in the years before. Standards for enabling integrated 
network management across multiple vendor networking resources were in the heat of 
development in international and regional arenas. While some thought that developing 
these standards was the most difficult path on the road to integrated management 
solutions, many realized a few years later that standards were the beginning of a long 
journey. Integrated network management emerged to be one of the most complex and 
hard to solve problems of our heterogeneous communications community. 

1991: Worldwide Advances in Integrated Network Management 

After two years, when we held the second ISINM in Washington, D.C., the need for 
enterprise-oriented management across data and telecommunications applications and 



 

 37

distributed systems became increasingly apparent. Principle problems related to 
incorporating standards into products aimed at providing coherent, integrated network 
management solutions across future, standards-based, multi-vendor components as 
well as existing proprietary components. Multi-vendor demonstrations in North 
America, Europe and Japan seemed to indicate that the time had come when users 
could competitively procure network management products in any of several countries 
and be confident that they would interoperate with comparable products in other world 
regions. That wasn't so. 

1993: Strategies For The Nineties 

We have learned. We are not at the end of the road - we are not even in the middle. We 
are only at the beginning and will remain there probably for the greater part of the 
nineties. Worldwide coordinated strategies are needed to evolve integrated network 
management in the best way. The beginning of the nineties was characterized by big 
political, ecological and technical changes in all areas worldwide. The exponential 
growth of internetworking in general and new multimedia applications based on 
broadband and mobile network technology will remain the driving forces of the 
communications area. 

However, the element of uncertainty plays a dominant role in all environments. Down-
sizing and up-sizing in volume and time requires flexibility to change. These problems 
are intensified by economic and regulatory constraints, problem complexity, 
technology advances, standards development, product introductions, market 
requirements, user demands and other factors which change unpredictably over time. 

A paradigm shift took place during these phases: network management systems used 
for crisis situations in the past evolved to powerful tools for the day-to-day 
management of systems, services, applications and, of course networks. 

1995: Rightsizing in the Nineties 

During this sometimes turbulent period of rightsizing in all areas, the need for 
management systems is greater than ever before. Management is a fundamental part of 
a reliable information infrastructure. It assures the correct, efficient and mission-
directed behavior of the hardware, software, procedures and people that use and 
provide all the information services. Effective management of the information 
infrastructure is becoming as essential as marketing and selling products. In addition, it 
helps to raise customer satisfaction. Integrated network management belongs to the 
enabling technologies of a worldwide information infrastructure.  

12.2. DSOM, October 28-30, 1996 
(http://www.cselt.stet.it/CNOMWWW/DSOM.html) 

The workshop is sponsored by the International Federation for Information Processing 
(IFIP) Working Group 6.6 on Network Management for Communication Networks 
with technical co-sponsorship by the IEEE Communications Society Technical 
Committee on Network Operations and Management (CNOM).  

The workshop is an effort to bring together people actively working in the Distributed 
Systems Management area. The workshop attendance is limited to 100 participants. 



 

 38

The scope of this workshop will be on the operations and management of application 
software or services within a distributed system and the impact of advanced computing 
and network technologies on management. 

The "hot topic" theme of this workshop will be on "Intelligent Agent Technology for 
Management of Distributed Systems" with papers distributed over 3 sessions. Recent 
trends in distributed processing is to make use of intelligent agents which interpret a 
scripting language such as TCL or Java which enables sophisticated new management 
functions to be loaded into existing management agent interpreters. A variation on this 
concept is the use of mobile agents which move around the network performing actions 
on behalf of users (managers). As new technologies become available and market pull 
is getting strong new management paradigms are being proposed and they will be 
discussed at the Workshop. 

The workshop will also explore the problems and issues relating to the use of dynamic 
programming concepts for intelligent agents in managing distributed systems, but will 
also provide papers on other topics related to distributed management, such as: 

• Experiences with Distributed Management of Applications and Services. 

• Coping with Management of Large Scale Distributed Systems 

• Cooperative Management 

• Quality of Service in Distributed Systems and Networks 

• Data Management in Distributed Environments 

• Standardization in Distributed Management 

• Platforms for Distributed Management 

• Management Policies 

• Security Issues  

13. Research Projects 

13.1. The Simple Group 
(http://wwwsnmp.cs.utwente.nl/~nm/) 
The Simple Group is the network management research group of the `Tele-Informatics and 
Open Systems' (TIOS) group of the `Centre for Telematics and Information Technology' 
(CTIT) of the `University of Twente' (UT) in the Netherlands. They maintain the Scotty 
(http://wwwsnmp.cs.utwente.nl/software/ut-scotty.html) system which is freely available 
as source code written in C and Tcl/Tk for UNIX systems. 

Scotty is the name of a software package which allows to implement site specific 
network management software using high-level, string-based APIs. The software is 
based on the Tool Command Language which simplifies the development of portable 
network management scripts. Scotty was originally developed at the University of 
Braunschweig.  



 

 39

They also maintain the SimpleWeb (http://wwwsnmp.cs.utwente.nl/) which is a listing of 
network management resources, including a list of network research projects. 
(http://wwwsnmp.cs.utwente.nl/research/groups.html) 
Scotty provides access to SNMPv1 and SNMPv2 and a number of well known Internet 
services like DNS, various ICMP packets, NTP, TCP, UDP, SUN RPCs (mount, rstat, 
portmap) etc. The tkined network editor is the graphical user interface which integrates 
applications that are usually written as Tcl scripts based on the scotty Tcl extension. 
Applications distributed with the scotty and tkined sources include network discovery, 
trouble-shooting applications, event filter, SNMP MIB browser etc. An experimental MIB 
browser is also available. 

13.2. ARPA ActiveNets Project  
The focus of the NetScript, Active Networks and SwitchWare projects is to make it easier 
to modify the underlying communications nodes. The abstracts for each of these projects 
cite the time delay (measured in years) for achieving communications protocol 
standardization, and suggest methods for enhancing communications nodes without need 
for a long standardization process. These projects are all sponsored by ARPA under the 
recently launched ActiveNets program. 

13.2.1. Columbia University Management by Delegation Project 
(http://www.cs.columbia.edu/~german/mbd.html) 

The agent technology has matured through a few generations of research versions. It 
was licensed by Columbia to System Management Arts (SMARTS), a DCC lab spin-
off company, that recently announced a commercial version. This is the SMARTS 
company referred to in the "Innovative COTS Products" section above.  

13.2.2.Columbia University NetScript Project 
(http://www.cs.columbia.edu/~dasilva/netscript.html) 

Netscript is a programming language and environment for building networked systems. 
Its programs are organized as mobile agents that are dispatched to remote systems and 
executed under local or remote control. The goal of NetScript is to simplify the 
development of networked systems and to enable their remote programming.  

13.2.3.MIT Active Networks Project 
(http://www.tns.lcs.mit.edu/activeware) 
A paper  (http://www.tns.lcs.mit.edu/publications/sospwip95.html) was presented at the 
15th Symposium on Operating Systems Principles. 

Active networks allow individual user, or groups of users, to inject customized 
programs into the nodes of the network. "Active" architectures enable a massive 
increase in the complexity and customization of the computation that is performed 
within the network, e.g., that is interposed between the communicating end points.  

13.2.4.University of Pennsylvania and Bell Communications Research 
SwitchWare Project 
(http://www.cis.upenn.edu/~jms/SoftSwitch.html) 



 

 40

We propose the development of a set of technology which will enable rapid 
development and deployment of new network services. The key insight is that by 
making the basic network service selectable on a per user (or even per packet) basis, 
the need for formal standardization is eliminated. Additionally, by making the basic 
network service programmable, the deployment times, today constrained by capital 
funding limitations, are tremendously reduced (to the order of software distribution 
times). Finally, by constructing an advanced, robust programming environment, even 
the service development time can be reduced.  

13.2.5.BBN ActiveNets Project 
As part of the ActiveNets project, BBN is working on the SmartPacket project, which 
applies active network technology specifically to the problem of network management. 

13.3. New ARPA Initiative in Active Networks 
ARPA is initiating a new research program in the Active Networks area. This program will 
focus on research into making virtual networks robust, secure, and dynamically self-
configuring, based on the requirements of the distributed application, and the run-time 
capabilities of the network resources. Managing the network resources when both their 
capabilities and capacities are dynamic requires management access that is as low-level, 
robust, and dynamic as the resource objects themselves. One area of research that BBN is 
proposing involves a low-level directory service that matches the requirements of 
distributed processing management, rather than using naming schemes based on e-mail 
requirements or a simple host name / IP address. 

13.4. Network Management in a Multi-National Environment 
(http://www.ndf.rl.af.mil/~accord/netman.html) 

This experiment will develop and evaluate emerging network management concepts in 
a coalition force environment. It will also provide management of the ACCORD 
testbed network, and support many of the experiments using the network, with 
management and data collection services.  

13.5. ACCORD project 
(http://www.ndf.rl.af.mil/~accord/accord.html) 

ACCORD is a five-nation ATM network testbed to enable cooperative demonstration 
and experimentation of technologies and ideas relevant to military Command Control 
Communications and Intelligence.  

14. Trends and Emerging Technologies 
There are several trends and emerging technologies, including: 

• Web based management tools as a way around long lead time protocol 
development (See below.) 

• Merger of network and system administration for "end-to-end" monitoring and 
more emphasis on client or user viewpoint; for example, managing video transfer 
by either allocating large network pipes or, enabling compression at end points or 
most interesting, by combination of both 



 

 41

• Management of managers; often done in a "proprietary" way, i.e. one manager 
provides the ability for other managers to report to it; not a peer-to-peer 
relationship 

• Microsoft Systems Management Server 
(http://www.microsoft.com/msdn/sdk/platforms/doc/backoff/bpr/src/sms_1.htm) a 
"de facto" standard for PC management, 

• Each manufacturer has both LAN and WAN management products, how will these 
be integrated in a "manager of managers" scheme? 

• Applications are driving network management; the large (i.e. bandwidth 
consumers) of the internet are web applications, email, manufacturing 
(CAD/CAM), distributed databases, and video; what are the application users and 
suppliers in these fields doing? 

• Mobile computing 
• Satellite communications  

Web-Based Enterprise Management  
(http://wbem.freerange.com) 

SAN FRANCISCO - July 17, 1996 - BMC Software Inc., Cisco Systems Inc., Compaq 
Computer Corp., Intel Corp. and Microsoft Corp. today proposed an industry standards 
effort that will allow administrators to use any Web browser to manage disparate 
systems, networks and applications. The intent of the Web-Based Enterprise 
Management effort is to enable the development of tools that reduce the complexity 
and costs of enterprise management.  

In addition, the effort promotes the use of two new management-related technologies to 
provide data modeling, manipulation and communication capabilities recently outlined 
at a meeting of the Internet Engineering Task Force (IETF):  

HyperMedia Management Schema (HMMS), an extensible data model representing the 
managed environment 

HyperMedia Management Protocol (HMMP), a communication protocol embodying 
HMMS, to run over HTTP  

 

15. Industry Comments 

15.1. Network Computing Online 
(http://techweb.cmp.com:80/techweb/nc/docs/aboutnwc.html) 
Four of the top 5 vendors (IBM, HP, Sun and Cabletron) were reviewed by Network 
Computing Online in an August 15 article entitled 
Global Network Management -- 4 Platforms Revi ewed. Network Computing Online has 
many corporate sponsors including Cabletron, HP, IBM Networking, and SunSoft and 
reviews products in a network testbed which includes university and corporate computing 
centers. 



 

 42

This was a difficult test to call because all of the products are an excellent foundation 
for some network bias. But Cabletron's Spectrum and HP OpenView NNM proved to 
be the best. Both have a fine distributed strategy and have added tools and functions to 
their base platforms. HP is still the leader in open systems support, while Spectrum's 
offering is the most intelligent. This is not to say the products from IBM and SunSoft 
failed. Both have workable, distributed strategies, and IBM has some useful tools 
where the most benefit is derived from a commitment to its hardware and software 
strategy.  

15.2. Communications Week 
The following is from an editorial in CommunicationsWeek April 8, 1996 n605 p34(1):  

Abstract  

Distributed services management is a major trend in 1996, with IBM moving to 
integrate the Tivoli Management Environment (TME) network management platform 
with its own network management tools after acquiring Tivoli Systems Inc and HP 
rolling out more pieces of its Tornado distributed-management strategy, such as 
Network Node Manager 4.1. These and other vendors are moving in the right direction 
to offer the unified, seamless management solutions increasingly needed on 
heterogeneous corporate internetworks. Today's management platforms manage 
networks and systems well but do not give administrators a clear view of the overall 
effects network problems will have on the enterprise. Cabletron Systems Inc may be 
closest to a true business-driven enterprise management model because it already has a 
scalable, distributed architecture in place.  

Full Text 

If last year was the year of merging network and systems management, 1996 will 
certainly go down as the year of distributed systems management.  

IBM Corp. took the industry by surprise earlier this year with the announcement that it 
was going to acquire Tivoli Systems Inc. With the merger completed, IBM unfolded 
the Tivoli road map last week at NetWorld+Interop, positioning the Tivoli 
Management Environment (TME) as the foundation of its distributed management 
strategy.  

Hewlett-Packard Co. also rolled out another piece of its Tornado distributed 
management strategy, Network Node Manager 4.1, giving network managers the 
ability to distribute a number of management functions across their enterprise 
networks.  

And Cabletron Systems Inc., Rochester, N.H., continued to build on its distributed 
architecture by announcing tighter links with key systems management partners' tools, 
extending the Spectrum platform's systems-administration reach.  

Although much work still needs to be done, these vendors--and others--are moving in 
the right direction. Network managers are searching for solutions that will help them 
effectively manage the numerous network devices, mainframes, Unix systems, PCs, 
servers, databases, applications and public network services that make up today's 
global networks.  



 

 43

Management platforms are good at managing networks and systems but can't really 
give IT managers a clear view of what impact a failed router may have on the 
accounting department or some other business function.  

In many companies, the move to distributed applications and object systems has 
already begun. It's also apparent that network managers are going to require 
administration tools that do much more than let a sharply defined window into their 
networks, systems and applications.  

Perhaps Cabletron, which already has a scalable, distributed platform, is pointing the 
way to the future by linking enterprise management with the processes that drive a 
company's business.  

This is a sign of things to come. Network-administration tools must either evolve or be 
replaced by management software that can see beyond network components--software 
that can tie into a company's business logic and business processes. 

The industry is focused on the problem of performance at the end-to-end applications level 
(or at an even higher level, on the operation of whole business units). However industry 
analysts overstate the current state of affairs. The abstract for the above article states: 
"Today's management platforms manage networks and systems well but do not give 
administrators a clear view of the overall effects network problems will have on the 
enterprise."  
In fact, there are still major problems in managing networks, (isolating the initial failure, 
determining what problems are in fact merely symptomatic of another failure, and 
determining how to fix the problem). 

15.3. Gartner Group 
(http://www.cabletron.com/analyst-reports/Gartner-Group/gartner7.html ) 
According to the Gartner Group report for June, 1996, the following companies and 
products accounted for 95% of the market: SunNet Manager, SPECTRUM, NetView, 
OpenView and ISM/OpenMaster.  
SunNet Manager has since been incorporated into the Sun Solstice Enterprise Manager and 
IBM Net View has been superseded by TME from the new IBM/Tivoli group.  

15.4. Network Management Market 
In Software Magazine, June 1996 v16 n6 p37(7), there are several references to the 
network management market: 

"Tivoli may have a good shot at a market-leading role, but Computer Associates 
International Inc. and Hewlett-Packard Co. aren't about to give an inch without a good 
fight."  

"For example, Computer Associates International now leads the Unix system 
management software market with nearly a 21% market share, according to IDC 
(International Data Corp. Framingham, MA)"  

"Furthermore, data from International Data Corp. shows that HP takes the lead when IS 
shops are asked to name their primary management platform."  



 

 44

 

16. Web Sites for more information: 

16.1. Network Management 
http://smurfland.cit.buffalo.edu/NetMan/) 
This server functions as the archive base for comp.dcom.net-management, as well as for a 
place to bring together references to other applications and servers. In addition, this site 
acts as a mirror site for applications, utilities and FAQs pertinent to Network Management.  

16.2. SNMP News  
(http://www.int.snmp.com) 
This is a quarterly publication of SNMP Research International. The first publication is 4th 
quarter, 1996 and covers such topics as Web-based Management, and SNMP v2 Security. 
This is the publication of a single commercial company, and as such, will undoubtedly 
reflect their perspective; however, this company has been involved in the research 
community for many years and newsletters are also likely to cover issues of general 
interest to the community. 

16.3. TechWeb 
(http://www.techweb.com/) 
Articles on technical topics, including network management. Recent articles of interest 
include the following: 
“Enterprise Management Is Just Around the Corner:” October 15, 1995 

We tested some preview editions of the next generation of network management 
products from SunSoft, HP and Cabletron, and the latest shipping version from IBM. 
Here's what we found...  

“Net Admins Demand Cohesive Management”, September 18, 1996 
“Problem or Solution? -- Net Management and the 'Net”, March, 18, 1996 
“The Big Picture -- Central control of distributed nets remains a work in progress, but 
remote monitoring technology is starting to take shape”, July 3, 1995 
 



 

 45

 

Section 2 - Peer to Peer Information 
System Management Architecture 

 

17. Executive Overview 

17.1. Identification 
This is the System Architecture Document for the Peer to Peer Information System 
Management program.  It is submitted in fulfillment of requirement 4.1.3.4 and as input to 
4.1.4; and CDRL A006; from the Statement of Work for the Peer-to-Peer Information 
System Management Contract #F30602-96C-0049. 

18. Document Stylistic Conventions 
This document is published both in paper and hypertext formats. The cross-references are 
identified inline, external references are collected in an Appendix, On-line References.   

18.1. Document Status 
This document was updated on 3/27/2002 12:45 PM by lbob@bbn.com (Linsey O’Brien) 

18.2. System Overview 
The Peer to Peer Information System Management [P2P] is designed to integrate the 
management of a variety of information systems and their associated network components, 
such as IP and ATM devices.  This will be accomplished by integrating selected existing 
management systems, which will in turn be done by providing optimized communications 
mechanisms in a standard framework enabling the management systems and their 
applications to interact as peers.  These interactions include managing the management 
systems and the peer communications components themselves. Provisions for securing the 
interactions will be outlined in the system architecture but are not considered a primary 
requirement of the P2P project. 

18.3. Document Overview 
The purpose of this document is to describe the functionality and architecture of a 
distributed management system that supports the requirements of the Peer to Peer 
Information System Management program.  It will document all the major functionality of 
the system and describe all the required interfaces, especially the integrated data 
distribution mechanisms.  A brief description of the contents of this document is provided 
below. 

The System Overview describes the high-level functions of the system as they relate to the 
requirements stated in the Requirements Document. 



 

 46

The Referenced Documents section lists supporting documents referenced directly or 
indirectly in this specification. 

The System Design Decisions section covers the key problems and issues that drove the 
System Architecture. 

The Functional Component Description takes the high-level requirements summarized in 
the System Overview and System-wide Design Decisions and starts the process of 
translating them into software design. It first breaks into components the functionality 
defined by the requirements.  It then translates those abstract components into a set of 
system objects and their interactions. 

19. Referenced Documents 

19.1. Contractor Specifications 
_ BBN Systems & Technologies Report 8180, Nov. 1996: Network Management Study 

_ BBN Systems & Technologies Report 8199, June 1997: Peer to Peer System 
Requirements 

_ BBN Systems & Technologies Report 6986 Rev. 3.0, Jan 1993: Introduction to Cronus 

_ BBN Systems & Technologies, Cronus Documentation, Release 3.0, 1 December, 
1992: Cronus Operator Manual☺ 

_ BBN Systems & Technologies, Cronus Documentation, Release 3.0, 1 December, 
1992: Cronus Operator Manual 

_ BBN Systems & Technologies, Cronus Documentation, Release 3.0, 1 December, 
1992: Cronus User Manual 

_ BBN Systems & Technologies, Corbus Documentation, Release 2.0, April 1996: 
Corbus Operator’s and Installation Manual 

19.2. Other Specifications 
I. Object Management Group publication PTC/96-03-04: CORBA 2.0 Specification 

II. HP OpenView:  

A. HP OpenView Network Node Manager Products Installation Guide: J1172-
90001 

B. HP OpenView Using Network Node Manager: J1172-90003 

C. HP OpenView Network Node Manager Reference: J1172-90004 

D. HP OpenView Integration Series 

1. Integration Concepts: J1177-90000 

2. OpenView Windows Application Style Guide: J1177-90002 

3. OpenView Windows Developer’s Guide: J1177-90003 

4. OpenView Windows Developer’s Reference: J1177-90004 



 

 47

5. SNMP Developer’s Guide and Reference: J1177-90005 

6. Integration Utilities: J1177-90006 

III. Tivoli TME (Note: Both the current and previous component names are given in 
some titles as  follows [Current / Former]) 

A. Tivoli TME10 Application Extension Facility User’s Guide V3.0:  GC31-
8345-01 

B. Tivoli [Mid-level Manager / Sentry]  Platform User’s Guide V3.0:  GC31-
8323-00 

C. Tivoli [Framework  / Management Platform] Planning and Installation 
Guide V3.0:  GC31-8382-00 

D. Tivoli [Framework  / Management Platform] User’s Guide:  V3.0 GC31-
8322-00 

E. Tivoli Framework Services Manual V3.0:  GC31-8348-01 

F. Tivoli SNMP Monitoring Collection Reference V3.0:  SC31-8388-00 

G. Tivoli / Enterprise Console Event Adapter Guide / SNMP:  SC31-8342-00 

H. Tivoli / Enterprise Console Event Adapter Guide / HP OpenView:  SC31-
8338-00 

20. System-wide Design Decisions 
This section summarizes the System Requirements document and indicates how these 
requirements affect the system architecture design 

20.1. Management Application Integration 
The system shall support integrating management information input and output in order to 
coordinate peer management systems.  Such coordinated management is delimited by four 
functions: 
 
1. monitoring status and other attributes 

2. providing historical context for attribute monitoring 

3. monitoring events 

4. issuing control commands 

 
Integrating two network management systems so that they  can perform such functions as 
peers requires transferring each of the four categories of information about target 
components to and from the management systems in a peer to peer fashion. Each of the 
four  functional categories of information transfer is implemented as one or more jargons. 

20.2. Target Components Integration 
The network management functions and information that drive the distribution and security 
requirements derive from standard ATM and IP components.  The ATM resources will be 



 

 48

controlled according to XBind, plus relevant standard SNMP MIB definitions available.  
The IP resources also will be managed according to their standard SNMP MIB definitions 
as made available by the network management systems.  To the extent that management 
APIs are defined by standard MIBs, transferring such information between management 
systems is relatively straightforward, but to the extent that such management APIs are 
implemented in system-specific object models, transferring information between such 
systems may require significant inter-system communication integration.  In short the 
application layer is compatible, but the underlying distribution infrastructure is not. 

20.3. Object-Oriented Architecture 
The system shall support object-based datatypes and provide object methods so as to 
support access to management information from a wide variety of network components 
and management applications without having to explicitly specify each individual 
interface. 

This requirement is derived from the need to integrate peer-managed target managed 
objects into systems whose models tend to be hierarchical.  Object-oriented systems’ 
object instances are inherently peers --- most of the hierarchical primitives are either 
inheritance-based or containment-based.  Containment relationships are defined at runtime 
and as such are open to being used to support configuration of peer-based arrangements 
such as a collection of jointly managed components. 

This architecture will integrate the management object model based on MIBs with the 
implementation object model based on CORBA by defining example CORBA-based 
jargons for each of the major MIB information types. 

20.4. Distribution 

20.4.1.Distribution Between Peers 
The first distribution requirement is that the systems exchanging management data do so as 
peers.  One system shall not be dependent on the other to operate (although it may not have 
access to as many managed objects).  However, hierarchical or centralized arrangements, 
while not the target configuration, will not be prevented. 

Because the peer systems will have their own collateral services, such as managed object 
directory services and local clocks, integration and distribution of information from such 
peer collateral services is also necessary. 

20.4.2.WAN Topology 
As networks expand, they are increasingly forced to interoperate over Wide Area Network  
(WAN) interfaces with peer networks run by peer organizations using their own network 
management systems. Support for WAN-based distribution across such borders is therefore 
required. 

Another driving force for WAN distribution is the nature of ATM equipment management 
interfaces (support for which is another Peer-to-Peer system requirement, see above).  A 
WAN channel is often the initial link between organizations using two management 
systems to deploy ATM equipment, much like a lightweight heaving line is used to pull a 
heavy mooring hawser across. 



 

 49

The primary effect on the system architecture was ensuring that the CORBA ORB 
distribution framework properly supports WAN distribution.  These issues are covered 
below, under Coping with CORBA Deficiencies. 

20.4.3.Distribution of Management Control and Information 
The management information distributed shall include status monitoring, event monitoring, 
issuing control commands and exchanging historical data to provide context.   These four 
functions exemplify both the major application functions (monitoring and control) and the 
major usage patterns (request/ response, updating large datasets or infobases and 
asynchronous notification). 

The functional and usage characteristics jointly define a jargon, an inter-system transfer 
mechanism whose characteristics are determined by the information and its usage.  For 
example, management application features such as historical collections should be fully 
accessible from a number of different management systems.  Distribution of large datasets 
of potentially processed management information is different from distributing raw 
information of the specific devices. 

20.4.4.Standard Distribution Framework 
As discussed in the Requirements Document, we consider an object-oriented distribution 
standard necessary to minimize the number and methods of low-level mechanisms used for 
distribution.  Therefore, we have chosen the Object Management Group’s CORBA 
standard as providing most (although not all) of the necessary low-level distribution 
capabilities while simultaneously supporting the object-oriented requirement.  The 
CORBA standard was chosen because of its open architecture as well as the availability 
(and maturity) of its distributed object management and distribution services.  It was also 
chosen because CORBA ORBs are increasingly seen as the distribution mechanism 
standard of choice within management systems, which should enhance both the long-term 
extensibility and reduce the long-term cost of management systems. 

20.4.5.Coping with CORBA deficiencies 
There are a number of difficulties in using CORBA to fulfill all the requirements discussed 
above: 
I. Lack of CORBA support in management systems 

II. Lack of CORBA V2 IIOP support in management system ORBs 

III. CORBA’s reliance on LAN-centric synchronous RPC for transport 

IV. CORBA’s lack of full and sufficient specifications for Collateral Services: 

A. Directory Services that are not LAN-centric 

B. Time Services that are not implicitly assumed or based on independent local 
clocks 

C. Security Services  

D. Management Services that manage the CORBA ORB and the P2P system 
extensions without depending on them recursively. 



 

 50

E. Persistence Services that go beyond writing every operation to disk and 
which are customizable on a per-object basis 

 
Although many management systems are object-oriented as far as the managed objects are 
concerned, the implementation of the system itself is not because of the need to distribute 
management information.  If such information is held by system objects, they must be 
distributed and standard support for distributed objects is a recent technological 
development. Furthermore, even when the management system is based on an ORB, inter-
operation with that ORB may be difficult, due to licensing and version skew problems.  
The standardization of the low-level protocol for Internet InterORB Operability has 
happened only recently, and its usage conventions are still not fully worked out beyond the 
demo stage.  

This architecture intends to address inter-system communications issues by selectively 
exporting and distributing management information, and providing a limited number of 
standardized, CORBA-based wrappers for non-CORBA-compliant systems (such as HP 
Openview) where direct access to the CORBA ORB framework is not available.  When an 
ORB is installed but its framework is not available, the use of an auxiliary ORB and 
standard CORBA APIs should minimize the later effort of porting a jargon to the 
previously unavailable embedded ORB. 

The underlying transport used by CORBA for procedural language mappings like C++, C 
and Java Remote Method Invocation (RMI) is Remote Procedure Call (RPC). This is a 
synchronous blocking mechanism, which we find inadequate for many types of 
management information usage, especially volatile types such as status and unpredictable 
ones such as events. Therefore, this architecture will address standard request/response 
usage with jargons directly defined by CORBA IDL members and attributes. We define 
non-request/response usage or indirect access jargons based on PASS objects: each PASS 
object is a CORBA-based transport object typed according to the management information 
it carries.  PASS objects provide an experimental asynchronous notification service 
implemented using an equally experimental implementation of C++ templates in the IDL 
compiler. 

Lack of a well-specified object instance directory service (or Implementation Repository) 
which complements the existing Interface Repository (type and other meta-information) 
has been a significant drawback of the CORBA V2 standard that has only recently been 
remedied. The standard still does not directly address the WAN distribution requirement, 
and CORBA services are of no use out on the WAN if an ORB cannot locate them when 
asked. However, it does specify a Directory Service interface, which can be integrated with 
other directory services whose WAN requirement is well understood and supported.  This 
architecture recommends that if the ORB’s implementation of the name service is 
inadequate, the system should supply and utilize another. 

Lack of an explicitly specified distributed time service, which allows for coordinated, 
accurate timestamps from multiple systems (including non-computer-based clocks) is also 
a significant drawback.  Coordinated time is not a critical service for distributed object 
brokering per se, but is required for managing distributed processing among heterogeneous 
systems.  CORBA implicitly depends on one of the two most widespread time services, 



 

 51

NTP and manual synchronization.  Full integration of CORBA and DCE (which has 
started with the DCE Name Service) would also remedy this lack by providing the DCE 
Time Service. 

Lack of a fully specified distributed Security Service is being addressed by the Object 
Management Group, but in the interim, the issues must be addressed locally.  See the next 
section, on Security Integration. 

Lack of a well-specified distributed management architecture is noticeable mainly in 
dealing with managing ORBs themselves, particularly when the management services are 
ORB-dependent and yet must function before the ORB is fully configured and functional.  
In peer architecture, with potentially many ORBs, this is particularly apparent.  These 
issues are being addressed locally; see the section on System Management, following. 

Lack of a persistence or storage interface is most noticeable in the lack of efficient 
implementations.  These issues are being addressed locally; see the section on Storage, just 
below. 

20.5. Security Integration 
Whenever resource control flows are distributed across a network, security concerns 
become more prominent.  Such security needs to cover from the lowest physical level up 
through the application level. First, the integrity of network management functions and 
information needs to be assured, particularly for control functions. Second, authorization 
and access control policies should be supported, including privacy support for sensitive 
information. Third, minimal protection against replay attacks is desirable, although 
extending it to a comprehensive defense against denial of service attacks is not cost-
effective.  Finally, derived requirements arising from the need to extend integrated security 
to WAN environments via common security mechanisms such as firewalls will be 
considered Management of Security of Management component issues; only hooks or 
placeholders will be defined or provided.  This architecture will define such hooks for all 
relevant security mechanisms provided by the two chosen information management 
systems, plus any relevant ones specified by Odyssey Research Associates in their 
architecture. 

20.6. System Management 
The system itself will provide a management interface and GUI that will enable the system 
integration components to be installed and configured. As such integration components 
will themselves be jointly managed by the peer systems, recursion issues will be dealt with 
by specifying low-level or minimal subsets for critical services. 

20.7. Storage 
The system shall support usage-determined storage to complement the distribution 
methods.  Just as the usage patterns drive the choice of jargon, they will also drive 
decisions about when and where information will be persistently stored. Persistence 
mechanisms will either conform to the CORBA standard or their usage will be explicitly 
specified as a distinct, replaceable module and access to that information will conform to 
MIB/CORBA standards via a jargon. 



 

 52

20.8. Graphic User Interface 
The system GUI shall be compatible with the HP Openview Xlib/Motif GUI and Tivoli 
Systems TME at the X Windows level.  It shall also allow Motif-compatible HTML 
viewers to be installed on the systems, such that displays from the XBind CGI scripts may 
be displayed.  Additional GUI components to support and provide access to integration 
components will be defined in either Tcl/tk or as HTML pages suitable for viewing via 
browsers. 

21. Functional Component Description 
The Functional Component Description contains a lower, but still functionally oriented 
breakdown of the major components of the system.  Items in this section are described in 
relation to how they provide system functionality instead of how they function as discrete 
applications.  This means that the Graphical User Interface (GUI) would be described in 
terms of the operator functionality it supports, rather than the method it would use to 
interface with network devices. 

Integrating two peer management systems requires a model of how to share management 
tasks in a peer-to-peer fashion.  Management Systems are applications, which hold a local 
view of one or more managed resources, the actual instance of which may be remote.  (See 
the Management System diagram below.)  The management view of a managed resource is 
termed a managed object and it holds a number of items of information about itself, 
including its resource type, ID, status, relationships with other managed objects etc. (See 
Managed Object diagram below).  Managed Objects are defined by their class definitions, 
also know as their management information base (MIB). When resources are remotely 
managed across the network, access to the MIB may be either through an application/agent 
management protocol such as SNMP or by distributing the Managed Object with a 
distributed object infrastructure.  If a distributed object approach is used, the client M.O. is 
incorporated into the management system’s application and the server M.O. into the 
managed resource. 

Our model for peer sharing of such managed objects is intended to cover 1) the situation in 
which the two systems have ‘joint custody’ of some managed resource or 2) they provide 
‘continuous coverage’ as a parallel load sharing arrangement or 3) they have a sequential 
arrangement in which there is a changing of the guard. In all of these cases, there is a 
period in which parallel management or ‘joint custody’ is desirable.  The key difference 
between a peer management system architecture and a hierarchical one is based on the 
additional requirements generated by the need to coordinate decisions in a joint custody 
arrangement. 

To support joint management we define shared managed objects . A shared object can be 
any of the managed objects definable in an information system management model.  The 
most familiar of such objects are the real network components or devices (as in an SNMP-
accessible Managed Object Instance), but they can also be management-system-defined 
objects.  One such familiar case are the collections of management information intended to 
be transferable between network management systems, such as an event log or a historical 
statistical dataset.   

 



 

 53

 

 
 
 

Figure 21-1 A Management System 

Type
ID
Char. Attrs 
Status
Relations 

 
Figure 21-2 Managed Object Structure and Formal MIB Definition 

Managing shared objects is based on the basic management functions, monitoring and 
control.  Making such standard managed objects shared involves two additional 
requirements: 
 
1. Distributing monitoring information equally to all responsible peer management 

systems  

2. Synchronizing control responsibility 

Monitoring and controlling a shared object can be done in several ways, but they are all 
based on designated peer management systems exporting attribute values collected locally 
to a distributed shared object and all other management systems then monitoring that 
shared object.   The simplest form of monitoring and control involves using a simple 
CORBA distributed object to export the managed object from a designated local system 
(see the section on Basic Management of Shared Objects, below).  All the other peer 
systems then use their standard monitoring and control processes to monitor and control 
that distributed object.  This approach has its drawbacks however, involving coordinating 



 

 54

control of monitoring policy, which we discuss in more detail below.  It also cannot handle 
asynchronous notification easily, forcing event monitoring into another special case.  
However, it is the normal approach for sharing control. 

The Shared Managed Object figure below shows two management systems sharing such an 
individual managed object, Switch, which the management system on the left is exporting.  
In addition they are sharing a collection of historical data, an example of an alternate 
monitoring approach. 

 

Mgmt. 
System

Switch

Switch M.O. 

Mgmt. 
System

Historic
Data

 
Figure 21-3 Shared Managed Objects 

This alternate approach delegates all monitoring responsibility by treating the managed 
objects to be monitored as a collection.  Monitoring is the most common case of managed 
objects being treated collectively, because both daily operations and statistical analysis 
require  on-going monitoring of groups of managed objects.  In those cases, making the 
resulting management information and operations shared may be more efficiently 
implemented by making the collection as a whole shared. 

Transfer of collective information between peer systems can then be optimized if necessary 
by transferring the monitoring policies (target objects, poll interval, optional access 
control, etc.) and their control to the local management system. The collected and partially 
digested monitoring results are in turn transferred from that collector management system.   

This delegation approach is used for collecting the historical data used to manage trends.  
For example, sharing historical statistics would involve setting up shared statistical 
application objects which represent the historical datasets and providing an administrative 
interface that would control when and how the datasets were distributed. 

Managing asynchronous notifications or events from shared managed objects is often also 
managed via this delegation approach.  The shared object in this case is a collective event 
source that may have also filtered or combined events from upstream sources or even 
generated additional events based on incoming events. 

21.1. Basic Management of Shared Objects 
The simplest management tasks involve low-level monitoring and control operations and 
basic shared management is based on a direct jargon that defines MIB access via CORBA 
IDL. 



 

 55

Applying a GET or SET to a shared object’s IDL-specified attribute is simply an extension 
of applying them to a regular managed object and involves: 

1. Initiating the command from within the first NMS or from its GUI.  

2. In the case of SET operations, verifying control access is permitted. 

3. Requesting the information from or operation on the shared object via the jargon 
interface.  The request is forwarded to the responsible peer system for local action and 
the result awaited. 

4. Invoking the translator wrapper for reformatting the result into the local format if 
needed. 

21.2. Asynchronous Attribute Monitoring 
When monitoring a shared managed object’s attribute(s) via a series of synchronous polls 
or GETs consumes too many resources, an alternative shared management interface can be 
defined.  This is often the case with status attributes, which are either so stable or so 
volatile as to be barely worth GETting even if only one management system is involved, 
let alone one or more peers.  In any case, we define a requirement for asynchronous 
monitoring in which the local management system is responsible for GETting the attribute 
value(s) in question and then publishing them via a distributed shared object for peer 
systems (including possibly itself) to monitor by subscribing to the shared object. 

21.3. Shared Historical Context Data 
Sharing data such as trend and other historical information is a combination of sharing 
standardized management data and non-standard application data in a standardized fashion.  
Sometimes context data are standardized (such as MIB-defined trend data) and can be 
embodied in a peer management system via a shared standard managed object. Other 
times, this is not so. In the latter case, we can define a private managed object class that is 
then shared.  The underlying mechanisms for doing this are: 

 
1. Initiating historical data collection and local storage from the component sources from 

within the transmitting NMS or from its GUI. 

2. Translating or reformatting the historical data if needed. 

3. Distributing the collected data via a jargon, possibly integrating them with previously 
distributed data in a distributed object that serves as the basis for the ‘shared object’ 
view in each participating management system. 

4. Initiating the receiving of distributed data from within the receiving NMS or from its 
GUI. 

5. Translating or reformatting the historical data if needed. 

21.4. Shared Object Control Operations Coordination 
As mentioned earlier, the second of the two major distinguishing features of peer 
management architectures is coordination of control operations.  Control operations are 
those involving writes, either as actions or sets.  In order for a target shared managed 



 

 56

object to present a consistent view of its state to each of its responsible peer managers, 
control access must be both properly authorized and sequenced. Authorization of 
operations actually consists of two functions, authentication and authorization. In sharing 
control responsibility, one peer management system delegates authority to, and defines a 
trust relationship with, another. Such a trust relationship is built on a series of 
authentication and authorization handshakes starting with the human operator launching 
the initial management application GUI, which in turn initiates programmatic actions 
which are distributed by the jargons, which in turn initiates actions by the receiving peer 
system.  Occasionally, the relationship is extended all the way to the ultimate target 
managed object. 

The initial authentication in this version of the architecture is based on a simple user ID 
and password mechanism as supplied by the two information management systems, 
OpenView and Tivoli.  Such authentication mechanisms will be secure only to the extent 
that their vendors have provided mechanisms.  Kerberos/DES in Tivoli may provide some 
significant protection, for example. However, both OpenView and Tivoli’s principals are 
based on the UNIX login IDs, and in the absence of Kerberos, even more dependent on a 
secure underlying operating system. This architecture assumes that, when necessary, 
secure UNIX kernel and inline network encryption mechanisms, such as FastTrack, will be 
added. Authentication following the initial operator validation is based first on CORBA 
mechanisms, followed by the server supplying the receiving peer system with an 
appropriate user identity.  

Authorization in this version of the architecture is based on a simple, platform-supplied 
scheme in which per-object access control sets store the authorized users' IDs. 

Sequencing of control requests is done on a first come, first served basis as received by the 
object’s server.   

21.5.  Collective Event Sources 
The simplest event management involves defining or configuring what types and sources 
of events will be redirected or copied to the peer system.  The underlying mechanisms for 
doing this are: 

 
1. Initiating the collection from the component sources from within the transmitting NMS 

or from its GUI. 

2. Translating the event data if needed. 

3. Transferring the event via a PASS jargon to the second NMS. 

4. Initiating the collective source and monitoring of the jargon from within the receiving 
NMS or from its GUI. 

5. Invoking the translator wrapper for reformatting, if needed. 

21.6. Competing Multiple Sources  
There is one case in which collecting management information from multiple sources is 
undesirable: when the sources compete with each other to supply the same information 
about the same shared managed object.  This can happen when the information 



 

 57

management system both collects its own information and imports it via a jargon or uses 
two types of jargons to get the same data.  There are two approaches offered to deal with 
this situation: overwrite and parallel objects.  In the overwrite situation, the two sources are 
merged and whichever one writes last determines the current value.   This approach can be 
useful for objects whose initial or complete set of values is updated via one synchronous 
source and then critical values are updated asynchronously, or when switching from one 
source to the other with some overlap. 

The other approach is to define parallel objects or variant attributes on the platform, with 
one object or attribute per source.  This is useful when the multiple sources are truly 
competing with each other and disagreements on the value need to be recognized, not 
overwritten. 

Generally objects (data structures) are used for complex information that must be read or 
written in a single transaction and attributes are used for information that while related to 
the other fields in the parent object can be read and written independently. The definition is 
done within the information management system, using its native mechanisms.  For 
example, in HP Openview an OV_Field may be used to hold an attribute value imported 
from a jargon. 

22. System Interface Description 
The System Interface Description describes the relationship of the various system 
component types described in the System Component Description section.  The intent of 
this section is to describe how the system components interact to allow the functional 
components to support the functionality described in the Functional Component section. 

There are three major types of interactions among components.  First are the configuration 
and translation/formatting interactions between management system components and the 
jargon components.  Second is the distribution of the categorized-by-jargon management 
information between the client and server parts of jargon components.  Third is the 
management of the jargons that make an object shared.  The following sections describe 
the system interfaces that allow peer management system components to utilize jargon-
distributed information and how such translation and distribution mechanisms are 
configured. 

The information in the MIB and applications has a range of distribution requirements.  
Some information is stable and is required to persist across system re-boots, other 
information is extremely volatile.  Some information comes in large packages, other 
information is compact and does not require much bandwidth to transmit.  Some 
information transfers are initiated by the management system, others by the managed 
object. 

22.1. Jargon-based Distribution 
The interface between a management system and the jargons is a significant portion of the 
system architecture. There are two main approaches, the direct  approach that utilizes 
CORBA to define jargon system interfaces directly and the indirect  approach used when 
the direct approach is unavailable or inappropriate. 



 

 58

A direct interface is one specified in IDL; it is straightforward and is covered by the 
CORBA and Corbus documentation referenced.   Often such managed objects are 
generated by MIB-to-IDL compilers such as SNMPIDL.  However, the easiest way to 
integrate managed objects so specified in a management system is to provide a CORBA-
compliant ORB framework in which the object and its interface can reside. Unfortunately, 
such management systems are rare (although becoming less so) and the ones that exist put 
a premium price on installing the managed object into the CORBA ORB framework. 

Even if access to a CORBA framework is available, direct interfaces have drawbacks that 
make them inappropriate for distributing some types of management information.  In 
particular, the heavy reliance of CORBA on an underlying synchronous and quite heavy 
RPC transport mechanism makes it both expensive and cumbersome to use for transient or 
stream-like information. 

However, this drawback can be hidden by indirect use of a CORBA based PASS object to 
provide a distribution channel that is almost as efficient as an asynchronous message-based 
channel while it is as correct and reliable as the synchronous channel on which it is based.  
As is often done in the communications world, the cost of the underlying synchronous 
channel is often shared by a number of multiplexed asynchronous users. 

Direct Object 
Server

PASS Object 
Server

CORBA 
Interface 

Mgmt.Sys. 
Clients 

 
Figure 22-1 Jargon-based Shared Managed Objects 

Using a PASS object to distribute information requires additional components to read, 
write and multiplex to the channel, these actually provide the API for the peer management 
systems. Management System-specific translation and format processing can be integrated 
into the reader/writer components, as can distribution policies such as attribute value edge 
detection or delta detection. 

For example, in the status jargon known the Management Information Status Tracking 
(MIST), whose core is the STATUS_PASS CORBA object, the server process implements 
the policy of how information is distributed to the clients.  Once a subscriber has received 
a complete copy of all the elements of the object, only new or different elements will be 
sent.  Enforcing this restriction is not placed on the publishing clients; the server will 
determine if the received values are duplicates of what it has already stored.  

Jargons based on PASS objects will allow external clients to perform the following 
methods on the application meta-objects: 

 
1. Get notified of new object values 



 

 59

2. Get sent new object values automatically 

3. Define new objects 

4. Define new object values 

5. Extract particular object values 

6. Delete old object values 

The ability to perform these MIST functions will be controlled by the STATUS_PASS, 
PASSWRITER and PASSREADER methods.  For example, the current STATUS 
PASSWRITER interface has the ability to publish the operational status of a set of managed 
objects by updating the STATUS_PASS object. 

The reason for this generic PASS object approach is to allow datatype- and management 
system-specific components to exist independently from the specifics of the distribution 
and subscription mechanisms.  This means that any management information datatype to 
be distributed can be mapped onto any appropriate distribution method without affecting 
the external portions of the jargon definition. 

In addition to the fundamental work of distributing management information through 
various kinds of jargons, the peer management systems must also be able to configure, 
monitor and otherwise manage these extensions that permit managed objects to be shared. 
Managing jargons and other meta-management tasks have an additional constraint: they 
must pull themselves up by the bootstraps and not rely on jargon-based mechanisms 
themselves for configuration information such as timestamps, authentication, existence and 
location information unless that particular collateral services sub-system is already up.  
This constraint therefore requires that a startup sequence or dependency graph be specified 
for each site’s configuration in which the source of the meta-management information at 
each stage of startup and shutdown is specified.  Such graphs may be used only by manual 
configuration systems or may be automated such that the SMO Share operation (see below, 
SMO Operations) control flow is based on them. 

22.1.1.Direct IDL Jargons 
Direct IDL Jargons actually have two functional interfaces defined by the formal IDL 
interface.  The first uses a combination of standard Create, List and Delete on a 
management system-specific factory to instantiate, browse and remove managed objects 
shared by management systems of one type with management systems of the same or 
another type.  The second uses the CORBA standard Attribute not only to define the 
datatypes of management information but also the read and write operations --- the GET 
and SET methods --- in IDL terms.  This is the IDL often generated by a MIB-to-IDL 
compiler tool.   Therefore all direct IDL jargons have the form: 

interface directSharedManagedObject 
{ 
      // This interface IDL is often generated by a MIB to IDL compiler, then included in the 
overall IDL 
      // Datatypes 
     //       These are SMO class specific 
     // Exceptions 



 

 60

    //        These are SMO class specific 
    // Operations 
    //       Since the GET and SET operations are implicit in the attribute specification, this 
section is  
    //       usually  empty 
    // Attributes 
    //       List all shared attributes for this SMO class here.  This is the workhorse section of 
the IDL 
 attribute MIBVarType MIBVarName; 
}; 
 
interface directSharedManagedObjectFactory 
{ 
       // This interface may have to be hand-coded and matched to the SMO interface 
       // Exceptions 
 exception SMO_invalidArg {long argTypeCode,  string message}; 
 exception SMO_exNoSuchObj {string objStringRef}; 
     // Operations 
     //          These operations are factory standards 
     // create Shared Managed Object 
 SharedObject Create(in sharedObjArg1, in sharedObjArg2,...) 
 raises ( SMO_invalidArg,...) ; 
     // destroy Shared Managed Object 
 void Destroy(); 
     // list Shared Managed Objects 
 sequence<SharedObject> ListAllObjects(); 
     // Attributes 
     // Factory attributes tend to be implementation specific. 
}; 

22.1.2.PASS-based Jargons 
The PASS is a container class that serves as a kind of intelligent buffer between producers 
(writers) and consumers (readers) for any user-supplied type of data. Multiple writers may 
populate a PASS object, and the data they provide may fan out to multiple readers. Not all 
data supplied by writers will be forwarded to readers; the details of the filtering done by 
PASS are described in the PASSREADER and PASSWRITER sections for each PASS-
based jargon. 

22.1.2.1.PASS IDLs 
 
// File:     pass.idl 
// Contents: CORBA IDL specification for Pass 
// System:   P2P development. 
// Created:  14-Jan-1997 
// Author:    
// Remarks: 



 

 61

// Generated by ldi on Tue Jul 11 16:40:42 1995. 
// $Header: /nfs/morpheus/u3/p2p/rcs/doc/techreports/sa1-10.rtf,v 1.2 1997/10/16 21:05:08 
lbob Exp $  
// COPYRIGHT 1997 BBN Systems and Technologies 
// A division of Bolt, Beranek and Newman, Inc. 
// All Rights Reserved. 
//  
// 10 Moulton Street 
// Cambridge, Ma. 02138 
// 617-873-3000 

22.1.2.1.1.PASSREADER IDL 
interface PASSREADER 
{ 
 void Destroy(); 
    // Display PASSREADER object 
 void Display( 
  out string pReaderName, 
  out unsigned long task, 
  out string RegisteredOnPass 
  ); 
}; // interface PASSREADER 
 

22.1.2.1.2.PASSWRITER IDL 
interface PASSWRITER 
{ 
 void Destroy(); 
   // Display PASSWRITER object 
 void Display( 
  out string pReaderName, 
  out string RegisteredOnPass 
  ); 
}; // interface PASSWRITER 
 

22.1.2.1.3.PASS IDL 
interface PASS 
{ 
      // 
    // Exceptions 
     
 exception PASSWRITER_INV {} ; 
 const string PASSWRITER_INV_msg  
  = “PASSWRITER object invalid or does not exist.”; 
 exception PASSWRITER_MAX_SIZE { 



 

 62

  unsigned short MaxSize ; 
     } ; 
 const string PASSWRITER_MAX_SIZE_msg  
  = “PASS object contains maximum number of PASSWRITERs.”; 
 exception PASSWRITER_NOT_REGISTERED {} ; 
 const string PASSWRITER_NOT_REGISTERED_msg 
  = “PASSWRITER has not been added to this PASS object.”; 
 exception PASSWRITER_ALREADY_REGISTERED {} ; 
 const string PASSWRITER_ALREADY_REGISTERED_msg 
  = “PASSWRITER has already been added to another PASS object.”; 
 exception PASSREADER_INV {} ; 
 const string PASSREADER_INV_msg 
  = “PASSREADER object invalid or does not exist.”; 
 exception PASSREADER_MAX_SIZE { 
  unsigned short MaxSize ; 
     } ; 
 const string PASSREADER_MAX_SIZE_msg 
  = “PASS object contains maximum number of PASSREADERs.”; 
 exception PASSREADER_NOT_REGISTERED {} ; 
 const string PASSREADER_NOT_REGISTERED_msg 
  = “PASSREADER has not been added to this PASS object.”; 
 exception PASSREADER_ALREADY_REGISTERED {} ; 
 const string PASSREADER_ALREADY_REGISTERED_msg 
  = “PASSREADER has already been added to another PASS object.”; 
 exception PASSREADER_BUSY {} ; 
 const string PASSREADER_BUSY_msg 
  = “PASSREADER is already blocked waiting for a PAYLOAD.”; 
 exception PAYLOAD_INV {} ; 
 const string PAYLOAD_INV_msg  
  = “PAYLOAD object invalid or does not exist.”; 
 exception PAYLOAD_MAX_SIZE { 
  unsigned short MaxSize ; 
     } ; 
 const string PAYLOAD_MAX_SIZE_msg 
  = “PASS object contains maximum number of entries.”; 
 
      // 
    // PASS Operations 
   // 
 
// Unconditionally destroy PASS object 
 void Destroy(); 
     
// “Display” a PASS object.  This returns information that is 
// useful for sanity checking/debugging.  This operation does not 
// change the state of the object. 



 

 63

 void Display( 
  out string pPassName,  // name of this PASS 
  out string pPassType,  // type of this PASS 
  out unsigned short pMaxTasks, // # of tasks 
  out unsigned short pMaxRecs, //  
  out unsigned short pMaxWriters, // # of writers that can register 
  out unsigned short pMaxReaders, // # of readers that can register 
  out unsigned short pRecCount,   // 
  out sequence<PASSWRITER> pWriterList, // list of current writers 
  out sequence<PASSREADER> pReaderList  // list of current readers 
  ); 
 
// Add a new PASSWRITER to a PASS object by name 
 PASSWRITER AddWriter(in PASSWRITER Writer, 
  in string WriterName) 
 raises(PASSWRITER_MAX_SIZE); 
// Remove a PASSWRITER from a PASS object 
 void RemoveWriter(in PASSWRITER Writer) 
 raises(PASSWRITER_INV); 
// Add a new PASSREADER to a PASS object by name 
 PASSREADER AddReader(in PASSREADER Reader, 
        in string ReaderName) 
 raises(PASSREADER_MAX_SIZE); 
// Remove a PASSREADER from a PASS object 
 void RemoveReader(in PASSREADER Reader) 
 raises(PASSREADER_INV); 
 
} ; // interface PASS 
 

22.1.2.1.4.PASSMGR IDL 
in file pass.idl: 
 
interface PASSMGR  
{ 
 
  // 
 // Exceptions 
// 
 
 exception PASS_EXISTS {} ; 
 const string PASS_EXISTS_msg 
  = “PASS object already exists.”; 
 exception PASS_INV {} ; 
 const string PASS_INV_msg 
  = “PASS object invalid or does not exist.”; 



 

 64

 exception PASS_TYPE_INV {} ; 
 const string PASS_TYPE_INV_msg 
  = “PASS type invalid.”; 
     
    // 
  // Operations 
 // 
 
// Create a PASS object 
 PASS Create(in string PassName, 
  in string PassType, 
  in unsigned short MaxRecs, 
  in unsigned short MaxWriters, 
  in unsigned short MaxReaders)  
 raises(PASS_EXISTS, PASS_INV); 
 
// Lookup a PASS object given its name and type. 
 PASS Lookup(in string PassName, in string PassType)  
 raises(PASS_INV); 
// PassEntry contains the name and type of a PASS object. 
// It is used in the parameter list of the List operation. 
 struct PassEntry { 
  string name; 
  string type; 
     }; 
 
// List returns the names and types of all PASS objects 
// known to this PASSMGR. 
 void List ( 
  out sequence<PassEntry> pPassList 
 ); 
}; // interface PASSMGR 
 
// local types start here. 
// do an #include “type.idl” to pull them in 
// They in turn will pull in the PASS Template IDL 
 

22.1.2.1.5.PASS Template IDL 
 
interface PAYLOAD 
{ 
 PAYLOAD_STRUCT 
 void Display(out PAYLOAD_REP ppRec); 
 void Destroy(); 
}; 



 

 65

 
interface PAYLOAD_PASS : PASS { 
 PAYLOAD_STRUCT 
// Add/update PAYLOAD to a PASS_Status object 
 void AddUpdateRec(in PASSWRITER Writer, in PAYLOAD_REP pRec)  
 raises(PAYLOAD_INV, PAYLOAD_MAX_SIZE); 
// Remove an existing PAYLOAD from a PASS object 
 void RemoveRec(in PAYLOAD_REP ppRec)  
 raises(PAYLOAD_INV); 
// Lookup a PAYLOAD in a PASS object 
 void LookupRec(inout PAYLOAD_REP ppRec)  
 raises(PAYLOAD_INV); 
// Lookup next PAYLOAD object 
 void LookupNextRec(in PASSREADER Reader, out PAYLOAD_REP ppRec)  
 raises(PAYLOAD_INV); 
}; 
#undef PAYLOAD 
#undef PAYLOAD_STRUCT 
#undef PAYLOAD_REP 
#undef PAYLOAD_PASS 

22.1.2.2.Object Interactions in PASS 
The following diagram shows a typical pattern of messages and object creation that might 
be seen in a system using PASS objects to transfer Status. The commentary explains the 
objects involved, the effects of the messages, and what is going on behind the scenes. 

 
Figure 22-2  Example PASS Jargon Usage 



 

 66

1. The writer locates a preexisting PASSMGR object, either by retrieving its object 
reference from the PASSMGR_OBJECT environment variable or via the Corbus 
function bind_to_any_in_clust(), and sends it a create message specifying it needs a 
PASS object through which STATUS objects can be passed. 

2. The PASSMGR object is a factory and lookup service for PASS objects. Here it fulfills 
its factory duty by creating a STATUS_PASS object in response to the Create request 
in (1). Note that pure PASS objects are never created; only subclasses of PASS that are 
specialized to carry a particular data type can be created. In C++ parlance, PASS is an 
abstract base class.  

3. PASSMGR returns the object reference of the created STATUS_PASS object, p0. 

4. Before the writer client can begin pumping data into the STATUS_PASS object p0, it 
must register itself as a writer by invoking the AddWriter operation on p0. 

5. In response to the AddWriter, p0 creates the PASSWRITER object and returns its 
object reference, w0, in step (6). Alternatively, the writer could have passed in a 
previously created PASSWRITER object. Internally, p0 remembers that w0 is now 
registered for writing on p0. 

6. The writer now presents the first piece of data, status1, to p0 with the AddUpdateRec 
operation.  The writer identifies itself to p0 by supplying the PASSWRITER object w0 
from step (6). Currently, PASS objects make little use of the writer identity, but it 
could be used in the future to implement various policies, e.g., prioritization of the data 
to be distributed to readers based on who wrote it. 

7. Attention now shifts to the reader side. A reader client wants to receive data from a 
PASS object named “p0”. It finds a PASSMGR object using methods similar to those 
described in step (1), and invokes the LookupByName operation on the PASSMGR 
object, which returns the object reference p0 in step (9). PASSMGR objects also 
support an operation that lists all available PASS objects by name. These operations 
comprise the “lookup service” mentioned above. 

8. Exactly paralleling the writer registration process, the reader client does an AddReader 
on p0, and p0 creates the PASSREADER r0 (11) and returns it (12). 

9. The reader client asks for the first piece of data from p0, and p0 returns status1 (14) 
that was written in step (7). 

10. The reader client asks for the next piece of data from p0, but since there is none, it does 
not immediately receive a reply. Internally, p0 suspends the thread that is servicing this 
operation. 

11. The writer sends another piece of status information, status2. 

12. p0 awakens the thread suspended in (15) so that it can return status2 to the reader. 

22.1.3.Jargon Management and Shared Managed Objects  
To manage a Shared Managed Object consists primarily of identifying which underlying 
Managed Objects will be shared, with whom they will be shared and enumerating the data 
and operations that will be shared using jargons.  To do this we define the following six 
classes: 



 

 67

 
1. Peer Manager Set:  a set of  one or more Peer Managers, comprising the known, 

permitted and available peer managers.  There are at least two instances of this class, 
one of all possible managers, known as the Peer Manager Registry, the other 
associated with the  formal SMO definition, known as the CustodianList. Offers the 
normal set-type operations such as add, remove and browse. 

2. Peer Manager: a managed object representing a remote management system.  It is 
defined by the Peer Manager Attributes, below, and offers the normal object operations 
of Create, Destroy and Display. 

3. Shared Managed Object Set: a set of zero or more SMOs comprising the managed 
objects shared by this management system with the remote Peer Manager.  Called 
SMOList in the jargon definition sections below. Offers the normal set-type operations 
such as add, remove and browse. 

4. Shared Managed Object: a managed object whose information is imported or exported 
for sharing.  It is defined as a collection of jargons connecting a local managed object 
with the remote peer managers in the Custodial Peer Manager Set. 

5. Jargon Set: a set of one or more Jargons comprising the exported and imported 
information belonging to a local managed object. The normal  set-type operations of 
add and remove are subsumed by the SMO operations share and unshare. Called 
localJargonList in the formal SMO definitions below. 

6. Jargon: a mechanism for importing or exporting a particular type or class of 
management information.  There are two families of jargons, direct or synchronous 
request/response based and indirect or Piecewise Asynchronous Service (PASS) based. 

22.1.3.1.Peer Manager Attributes 
1. remPeerSysName:  The host, system or node name of the remote peer management 

system: a human readable string that can be mapped into the network address used by 
management by a directory service.  In this version of the architecture, a DNS name. 

2. remPeerIPAddr:  The network address used of the remote peer system, used when the 
directory service is not available or accurate.  In this version of the architecture, an IP 
v6 address. 

3. remPOC:  The Point of Contact information for manual administration coordination, 
this attribute set includes the person’s name, organization, address type (email, phone, 
postal, etc.) and address. 

4. remPlatformType:  The type name of the remote peer management platform.  In this 
version of the architecture, an enumeration, in this version of the architecture, of 
HPOV or TME, for HP OpenView and Tivoli TME respectively. 

22.1.3.2.Shared Managed Object Attributes 
localMOID:  The Managed Object ID: the name or stringified object identifier of the local 
managed object to be shared.  Used as entry in the SMOList.  Must include the sysName 
and any subsystem identification necessary to fully distinguish the managed resource for 
the local information management system. 



 

 68

localJargonList:  A list of the supported jargons, specified as a sequence of items from the 
jargon enumeration.  In this version of the architecture,  the jargon enumeration consists of 
Status, Trend Bulk,  Trend Subscription, Snapshot, Control and Event. Selected jargons are 
activated by the Share operation. 

localShareType:  The direction of the jargon information and control flow; whether the 
local management system is exporting or importing the managed object information. 

CustodianList:  the set of names or stringified object identifiers of the remote Peer 
Managers which share the management responsibility for this SMO. 

22.1.3.3.SMO Operations 
Share extends a Managed Object or Collection by setting the SMO extension attributes, 
creates a SMOList entry and starts any jargons specified, including any necessary 
wrappers. 

Unshare stops the wrappers (which may also discontinue the jargon server) and removes 
the SMOList entry and SMO attributes. 

Browse lists all the shared managed objects currently exported by the jargon(s) between 
platforms of the local type and those of the remote type. 

22.2. Asynchronous Attribute Monitoring Interface 
The most critical of the attributes that require asynchronous monitoring are status 
attributes.  For this reason, the first asynchronous attribute jargon will distribute status 
information. Status information about IP managed objects can be determined either by 
polling SNMP agents for status information (such as Uptime) or by querying the standard 
status interfaces on the information management system (such as the OpenView managed 
node status attribute). This information then will be forwarded to a PASS-based status 
jargon known as the STATUS_PASS to be distributed to the peer systems.  Each 
STATUS_PASS holds information about a single managed object in a status record 
datatype used by the template process to refine the PASS into a STATUS_PASS. 

The resulting STATUS_PASS records contain: 

 
1. Network Address 

2. Operational Status 

3. HeartBeat information 

The Network Address attribute is an address used to identify a single interface on a 
managed system.  In the case of a network host, this may be the only interface and devices 
like routers or switches can support multiple interfaces. 

The Operational Status attribute holds a single value whose type is determined by the 
status translation tables for the peer management systems in question, but which most 
often is derived from the enumeration defined for Status by the management platform or 
occasionally by the MIB. 

The HeartBeat attribute is a jargon management field.  It is discussed in the management 
services section. 



 

 69

Once a management system has subscribed to status information, it will continue to receive 
status items (as STATUS_PASS records until the subscription connection is terminated. 

Supplying status from non-SNMP sources will require a suitable Status PASSWRITER 
function which can take in status from the non-SNMP source on a specified regular basis 
and provide a standard translation if necessary.  It will also require a suitable Status 
PASSREADER function which will provide a library of the inverse read functions. 

22.2.1.Status_PASS API 
The Status_PASS API consists of two operations and a distribution or update policy.  The 
operations include  a read operation, which posts a read request via the PASSREADER 
library, and a write operation, which writes via the PASSWRITER.  Distribution policy for 
status information is only to write a new status record if the incoming status value is new 
or different .  Status information only is given to readers if they are newly created (and 
hence have not seen any of the data yet) or if the reader is already up but there is a newly 
written status value. Furthermore, the status data may be declared  persistent; if the server 
crashes and restarts, subsequently registered PASSReader will get all of the current data 
(per the previous rule). 

22.2.2.Status PASSREADER 
The status PASSREADER is a library object that embodies the read distribution policy for 
Status information. 

22.2.3.Status PASSWRITER 
The status PASSWRITER is also a library object that embodies the write distribution 
policy for Status information. 

22.2.4.STATUS_PASS IDLs 
Using the standard CORBA IDL mechanism, #include “status.idl”, add the following 
status refinements as stored in the file status.idl 
#define PAYLOAD_STRUCT  
struct STATUS_REP {  
string RecName;  
string RecValue;  
string HeartBeat; 
};  
 
#define PAYLOAD_REP  STATUS_REP 
#define PAYLOAD          STATUS 
#define PAYLOAD_PASS  STATUS_PASS 
// The following pass-template IDL is described in the section Pass Template IDL  
#include “pass-tmpl.idl” 

22.3. Historical Data Collection and Distribution 
The source of all trend and other historical context data is a periodic collector of some 
standard attribute values for one or more attributes.  Making those historical datasets 
available to a peer manager can take several forms.  



 

 70

The basic model of stable historical dataset transfer populates its Trend distributed object 
on Create or Read. The server takes a snapshot of (for example) the HP Openview 
historical database files, converts them to the IDL-defined wire format and ships them back 
to the client.  

It is also possible to declare the Trend object persistent and use a storage/retrieval-
optimized persistence API to keep a stable copy within the distributed system. 

When the historical dataset is volatile, for example when it is still in the process of being 
created at the source peer management system but the other systems wish immediate 
access, another Trend jargon is necessary, the Trend Subscription jargon.  All of the  Trend 
variants of historical context transfer include implementations of the following interface 
methods.  Note, Items c) through e) may be bundled into a single fully distinguished 
identifier such as an OID. 

 
1. An operation to read a chunk of history from the Trend object.  Input arguments 

include: 
a) the time collection started (the anchor time) 
b) the time interval covered 
c) the source managed system 
d) the source managed component class ID on that node (if any) 
e) the source component instance ID on that node (if any) 
f) the MIB variable ID 
g) the MIB variable value 

 h) resampling interval required  Resampling allows the data to be treated as if 
collected at regular intervals even if they were not. A zero value means no 
resampling 
 

 It will return a sequence of structures or objects that contain:  
a) the time collection started (the anchor time) 
b) the time interval covered 
c) the source managed system 
d) the source managed component class ID on that node (if any) 
e) the source component instance ID on that node (if any) 
f) the MIB variable ID 
g) the MIB variable value 
 

2. An operation to write a chunk of history to, or create, the Trend object using the 
same format as the read for input arguments.  In some Trend jargons this operations 
will be implicit in either the Create or Read operation, in which case the Trend 
server must be collocated with the source of the Trend data. 

3. An operation to list/browse the available Trend data.  The user will be able to get a 
list of Trend data, discover what hosts and SNMP variables are recorded in them, 
and for what time periods. 

4. An operation to browse the available Trend objects that hold already fetched Trend 
data. 

 



 

 71

The ‘chunks’ of history or TrendTables are optimized for transfer by casting them into one 
of three forms: 

 
1. by time 

2. by variable 

3. by device 

In all cases, the data is a sequence of samples, and one sample is characterized by the 5-
tuple   (start time, end time, device, variable, value)   However, sending all five fields for 
every sample would be wasteful, since there will usually be much redundancy.  For 
example, there will probably only be a few devices and variables in a table compared to the 
total number of samples.  So, we define three different table formats to factor out different 
pieces of the redundant information.  This crude form of compression is useful since the 
trend data can be very large (megabytes).  It is up to the client to decide which format to 
use. 

22.3.1.TrendTable by Time 
A trend table that is organized by time will factor out the start time from the 5-tuple, so the 
returned data will be a sequence of: 

 
1. start time 

2. sequence of (end time, device, variable, value) 

This means that all the samples that were taken at the same time appear together. 

22.3.2.TrendTable by Device 
A trend table that is organized by device will factor out the device from the 5-tuple, so the 
returned data will be a sequence of: 

 
1. device 

2. sequence of (start time, end time, variable, value) 

This means that all the samples that were taken for the same device appear together. 

22.3.3. TrendTable by Variable 
A trend table that is organized by variable will factor out the variable from the 5-tuple, so 
the returned data will be a sequence of: 

 
1. variable 

2. sequence of (start time, end time, device, value) 

This means that all the samples that were taken for the same variable appear together. 



 

 72

22.3.4.Common Trend Datatypes IDL 
 
// File:     nmtypes.idl 
// Contents: idl include for common types used in network management 
// System:   p2p development. 
// Created:  15-Jul-1997 
// Author:   David P. Wiggins 
 
// Remarks:  this file is intended to be included by other idl files 
 
// $Header: /nfs/morpheus/u3/p2p/rcs/doc/techreports/sa1-10.rtf,v 1.2 1997/10/16 21:05:08 
lbob Exp $  
 
// COPYRIGHT 1997 BBN Systems and Technologies 
// 10 Moulton Street     Cambridge, Ma. 02138    617-873-3000 
 
// Identifier for a device -- just an IP address. 
typedef sequence<octet> DeviceID; 
 
// Time in seconds since Jan 1 1970. 
typedef unsigned long TimeStamp; 
 
// Difference between two TimeStamps in seconds. 
typedef unsigned long TimeCovered; 
 
// Part or all of the MIB object ID (OID). 
typedef  sequence<unsigned long> MIBVariable; 
 
// MIB Variable's value.  Assume everything can be represented by a double. 
typedef double MIBValue; 
 

22.3.5.Trend Bulk IDL 
// File:     trend.idl 
// Contents: trend bulk jargon interface 
// System:   p2p development. 
// Created:  17-July-1997 
// Author:   David P. Wiggins 
 
// $Header: /nfs/morpheus/u3/p2p/rcs/doc/techreports/sa1-10.rtf,v 1.2 1997/10/16 21:05:08 
lbob Exp $  
 
// COPYRIGHT 1997 BBN Systems and Technologies 
// 10 Moulton Street     Cambridge, Ma. 02138    617-873-3000 
 
 



 

 73

#include "nmtypes.idl" 
 
struct DeviceVariable { 
 DeviceID    device;   // IP addr 
 MIBVariable variable; // SNMP OID 
 }; 
 
typedef sequence<DeviceVariable> seqDeviceVariable; 
 
 
enum TrendTableType { 
    TrendTableByTime, 
    TrendTableByVariable, 
    TrendTableByDevice 
}; 
 
// Parent class of all trend tables. 
interface TRENDTABLE { 
 
    // Display: return information about this trend table. 
    // Added for debugging; it should either be removed or elaborated 
    // to also return the devices and variables in the trend table. 
    void Display( 
  out TimeStamp      startTime, 
  out TimeStamp      endTime 
  ); 
 
    // Destroy: delete this trend table 
    void Destroy();   
}; 
 
// table organized primarily around the sample time 
interface TRENDTABLE_BYTIME : TRENDTABLE { 
 
    // info returned for each time value 
    struct DeviceVariableValue { 
  DeviceID      device; 
  MIBVariable   variable; 
  MIBValue      value; 
  TimeCovered   timeSpan; 
  }; 
 
    struct Time_DeviceVariableValue { 
  TimeStamp anchorTime; 
  sequence<DeviceVariableValue> dvv; 
  }; 



 

 74

 
    // GetTable: return trend data  for given the device/variable 
    // pairs that falls within the starting and ending time period. 
    sequence<Time_DeviceVariableValue> GetTable( 
  in seqDeviceVariable sdv, 
  in TimeStamp startTime, 
  in TimeStamp endTime 
  ); 
}; 
 
// table organized primarily around the variables 
interface TRENDTABLE_BYVARIABLE : TRENDTABLE { 
 
    // info returned for each variable 
    struct DeviceTimeValue { 
  DeviceID     device; 
  TimeStamp    anchorTime; 
  MIBValue     value; 
  TimeCovered  timeSpan; 
  }; 
 
    struct Variable_DeviceTimeValue { 
  MIBVariable variable; 
  sequence<DeviceTimeValue> dtv; 
  }; 
 
    // GetTable: return trend data  for given the device/variable 
    // pairs that falls within the starting and ending time period. 
    sequence<Variable_DeviceTimeValue> GetTable( 
  in seqDeviceVariable sdv, 
  in TimeStamp startTime, 
  in TimeStamp endTime 
  ); 
}; 
 
// table organized primarily around the devices 
interface TRENDTABLE_BYDEVICE : TRENDTABLE { 
 
    // info returned for each device 
    struct VariableTimeValue { 
  MIBVariable  variable; 
  TimeStamp    anchorTime; 
  MIBValue     value; 
  TimeCovered  timeSpan; 
  }; 
 



 

 75

    struct Device_VariableTimeValue { 
  DeviceID device; 
  sequence<VariableTimeValue> vtv; 
  }; 
 
    // GetTable: return trend data  for given the device/variable 
    // pairs that falls within the starting and ending time period. 
    sequence<Device_VariableTimeValue> GetTable( 
  in seqDeviceVariable sdv, 
  in TimeStamp startTime, 
  in TimeStamp endTime 
  ); 
}; 

22.3.6.Trend Bulk Factory IDL 
From the file trend.idl: 
 
interface TRENDFACTORY 
{ 
    // Added these to get around Corbus limitations. 
    typedef MIBVariable TFMIBVariable; 
    typedef DeviceID    TFDeviceID; 
 
    // CreateTable: return a table object of the given type that has values  
    // for the given device/variable pairs over the given time interval. 
    TRENDTABLE CreateTable ( 
  in seqDeviceVariable sdv, 
  in TimeStamp      startTime, 
  in TimeStamp      endTime, 
  in TrendTableType tableType 
  ); 
 
    // GetSummary: return all possible variables and devices for which 
    // trend data is available, as well as the minimum and maximum  
    // timestamp of all the data.  This operation can be used to help 
    // decide what parameters to give to CreateTable. 
    void GetSummary( 
  out sequence<TFMIBVariable> vars, 
  out sequence<TFDeviceID> devices, 
  out TimeStamp minTime, 
  out TimeStamp maxTime 
  ); 
}; 



 

 76

22.3.7.Trend Subscription API 
The Trend_Subscription or Trend_PASS API  consists of two operations and a distribution 
or update policy.  The operations include  a read operation that posts a read request via the 
PASSREADER library and a write operation that writes via the PASSWRITER.  
Distribution policy for individual TrendTable records is only to write a new TrendTable 
record if the incoming TrendTable record value is new or different .  TrendTable record 
information is only given to readers if they are newly created (and hence have not seen any 
of the data yet) or if the reader is already up but there is a newly written TrendTable record 
value. Furthermore, the TrendTable records may be declared persistent; if the server 
crashes and restarts, subsequently registered PASSREADERs will get all of the current 
records (per the previous rule). 

22.3.7.1.Trend Subscription PASSREADER 
The Trend_Subscription PASSREADER is a library object that embodies the read 
distribution policy for TrendTable record information-- it reads any changed TrendTable 
records. 

22.3.7.2.Trend Subscription PASSWRITER 
The Trend_Subscription PASSWRITER is also a library object that embodies the write 
distribution policy for TrendTable record information--it detects any changed TrendTable 
records and writes them into the TrendPASS. 

22.3.7.3.TREND_PASS IDL 
In the standard PASS IDL file pass.idl , and using the standard CORBA IDL mechanism, 
#include “Trend_PASS.idl”, add the following Trend_Subscription refinements as stored 
in the file Trend_PASS.idl 

#define PAYLOAD_STRUCT  
struct TREND_SUBSCRIPTION_REP { 
 string DevName;  
 string VarName; 
 string VarValue ; 
 TimeStamp startTime; 
 TimeStamp endTime; 
 string HeartBeat; 
};  
 
#define PAYLOAD_REP  TREND_SUBSCRIPTION_REP 
#define PAYLOAD           TREND_SUBSCRIPTION 
#define PAYLOAD_PASS TREND_SUBSCRIPTION_PASS 
// The following pass-template IDL is described in the section PASS Template IDL  
#include “pass-tmpl.idl” 

22.4. Attribute Snapshots 
Getting the latest value of a shared managed object’s attribute is often useless without 
context, but acquiring the current value and acquiring the context are modeled here as two 



 

 77

separate jargons.  Applications are expected to determine what an appropriate historical 
context is and request it either via a bulk transfer or start collecting via a subscribed-to 
transfer or some combination.  In parallel, they should request the current value, and when 
results from both kinds of operations are in hand, the application can then display, analyze 
or store them as needed. 

Requesting  the current value of a Direct Shared Managed Object is simply a matter of 
invoking the GET method on the attribute in question. 

22.5. Control Commands 
Control commands will be forwarded by shared managed objects to the responsible peer 
management system to be executed as though they were local.  Attempting to bypass the 
forwarding process to issue control commands directly to the target object is strongly 
discouraged for two reasons.  First, it may bypass security mechanisms that implement 
authorization delegation.  This may not only prevent access due to missing authorization 
tokens but may also bypass operations coordination mechanisms resulting in a control tug-
of-war and denial of service.  

Control results will be published via events and status updates. Direct Shared Managed 
Objects generally use a simple write such as SNMP or CORBA SET method on the 
appropriate attribute to implement control, but if a non-SNMP interface is expected, other 
methods may be defined and used. 

22.5.1.Control IDL 
The control jargon interface is defined in the following IDL.  The included file 
nmtypes.idl is used by those jargons that find it easiest to define their wrapper 
interfaces in terms of SNMP MIBs.  It is defined in section 22.3.4, Common Trend 
Datatypes. 
 
// Declared types 
 
// Each call processes 1 set command which will have a few parameters 
// a MIB variable, a MIB value for the variable, and a destination host. 
 
#include "nmtypes.idl" 
 
interface CONTROL { 
 
   exception no_dev_or_oid{}; 
 
   // set takes a host ip address, a snmp object identifier 
   // (oid), a value to be set for the oid, calls the server and returns 
   // the result in output string variable res. 
 
   void set( in  DeviceID                dest_host,   // seq of octet 
      in  MIBVariable             oid,         // seq of ulong 
      in  MIBValue                val,         // double 
             in  string                  community_name,   // community 
name 
      out string                  res 
   ); 



 

 78

 
   // typedefs for downloadFrSvr(); It gets around Corbus limitations 
   // copied from trend.idl (TFMIBVariable and TFDeviceID). 
 
   typedef DeviceID             CJDeviceID; 
   typedef MIBVariable          CJMIBOID; 
   typedef sequence<CJDeviceID> seqDevices; 
   typedef sequence<CJMIBOID>   seqOIDs; 
 
   // downloadFrSvr downloads the managed-hosts list and the oids 
 
   void downloadFrSvr( out seqOIDs    vars, 
         out seqDevices devices 
   ) raises ( no_dev_or_oid ); 
}; 
 
 
 

22.6. Event Monitoring 
Events will be directed to shared event collections which will forward them to interested 
subscribing peer management systems. 

The Event or Event_PASS API  consists of two operations and a distribution or update 
policy.  The operations include  a read operation that posts a read request via the 
PASSREADER library and a write operation, which writes via the PASSWRITER.  
Distribution policy for individual Event messages is only to write a new Event message if 
the incoming Event message value is new or different .  Event message information is only 
given to readers if they are newly created (and hence have not seen any of the data yet) or 
if the reader is already up but there is a newly written Event message. Furthermore, the 
Event messages may be declared persistent; if the server crashes and restarts, subsequently 
registered PASSReaders will get all of the current records (per the previous rule). 

22.6.1.Event PASSREADER 
The Event PASSREADER is a library object that embodies the read distribution policy for 
Event message information. 

22.6.2.Event PASSWRITER 
The Event PASSWRITER is also a library object that embodies the write distribution 
policy for Event message information. 

22.6.3.EVENT_PASS IDL 
In the standard PASS IDL file pass.idl , and using the standard CORBA IDL mechanism, 
#include “Event_PASS.idl”, add the following Event refinements as stored in the file 
Event_PASS.idl 
#define PAYLOAD_STRUCT  
struct EVENT_REP { 
 string RecName;  
 string RecValue;  
 string HeartBeat; 



 

 79

};  
 
#define PAYLOAD_REP  EVENT_REP 
#define PAYLOAD           EVENT 
#define PAYLOAD_PASS EVENT_PASS 
// The following pass-template IDL is described in the section PASS Template IDL  
#include “pass-tmpl.idl” 

22.7. Collateral Service Interfaces 

22.7.1.Directory Services 
Directory services will be imported from all peer management systems and from the jargon 
ORB.  This will enable management applications to locate Shared Managed Objects and 
Peer Management System Components. 

22.7.2.Time Service 
Time services will be imported from the local peer management system.  Synchronization 
with other peer management systems will be automatic if they are all using the same 
distributed time service and manual (by communications with the remote Point of Contact) 
otherwise. 

22.7.3.Security Services 
Authentication and privacy services will be imported from  the associated security project.  
Authorization will be imported from the peer management systems and the jargon ORB. 

22.7.4.Management Services 
Management Services for the local part of a Shared Managed Object will be imported from 
the local peer management system.  Management services for the CORBA-based jargon 
components of a Shared Managed Object will be imported from the ORB.  Management 
services for the jargon wrapper components and for coordinated jargon management will 
be provided.  A unified graphic user interface will be used to combine access to and 
coordinate usage of these management services wherever reasonable.  The structure of the 
management services so provided is defined below in the System Component Description 
section on Jargon Management. 

In addition to providing jargon configuration and GUI monitoring, PASS-based jargons 
may also define a heartbeat attribute in their payloads.  The heartbeat is updated by the 
PASSWriter on a periodic basis and can be used by the PASSReaders to feed status to a 
jargon managed object on the management system importing data via that jargon.  If the 
ultimate source (for example a remote poller) goes down but not the PASSWriter, this can 
be used to signal the problem across a distribution interface that only transmits changed 
values such  as many PASS configurations do.  In addition, PASSReaders may signal 
problems (such as the PASS object or service going away) directly to a jargon managed 
object.   

To efficiently support collective SMO data such as status or events jargon wrappers may 
offer various multiplexing services by sharing a single PASS jargon instance across 



 

 80

multiple target shared managed objects. The sharing may be implemented  either by using 
multiple writers to feed the distribution object or by multiplexing inputs and feeding a 
single writer, or both.  Multiple writers are useful if several systems are acting jointly as a 
single peer. The first system starts up the jargon instance, the others then join in as 
subsidiary writers.  A single writer is more efficient if a single system is serving as the 
liaison system and can, in its PASSWriter,  scan the list of SMOs (either in the platform or 
internally) and multiplex the necessary inputs.  These policies may be stored in 
environmental attributes, startup command line arguments or in the SMO Share operation 
implementation. 

22.7.5.Persistent Storage Services 
Persistent Storage Services will be imported from the source peer management system 
where appropriate, and from the jargon ORB if appropriate.  Persistent Storage includes 
but is not confined to relational databases, object-oriented databases and flat files.  Usage 
of persistent storage by a jargon may be determined by local policy, in which case 
appropriate configuration switches should be provided. 

22.8. User Interfaces 
User interfaces will follow the style of the associated local peer management system as far 
as possible.  When peer system GUI support is missing, X windows compatible application 
interfaces will be supplied based on Tcl/tk.  Tcl/tk scripts, in conjunction with the Tcl/tk 
interpreter (wish) binaries which have been extended to provide access to necessary 
CORBA and information management system interfaces, will be invoke-able from the 
information management system’s native GUI.  The Tcl/tk scripts will be integrated using 
the information management system’s GUI integration tools. 

23. System Component Description 
The System Component Description focuses on a low level detail description of the 
underlying implementation object model used to support the functionality described in the  
Functional Component Description .  All component types and object classes are 
introduced and discussed and some level of detail is included to describe the critical sub-
components of each. 

This architecture relies on categorizing structured management information such as MIB 
data and logs according to their distribution requirements as discussed in the previous 
sections.  In the resulting implementations each jargon consists of one or more code 
objects, both CORBA objects and undistributed C++ objects.  The simple direct jargon 
objects are used for stable, low-volume information, synchronously transferred on demand 
from the management system.  The attribute-snapshot and control commands, which are 
based on synchronous GET and SET operations to managed devices, are implemented as 
direct object attributes’  IDL-generated GETs and SETs. 

When information changes often enough or is big enough (or both) that implementing it in 
a Direct object would be too bandwidth-intensive or prone to hanging due to blocking, it is 
instead implemented using a PASS or indirect jargon object, which allows an application to 
subscribe to a ongoing service.  If necessary for efficiency, the jargon may only distribute 



 

 81

the latest changes.  PASS objects are defined by a templatized IDL that specifies the 
transport. 

There are six jargons for network device management information and functions: 

 
1. The Status jargon, a PASS interface to status information, is used for bandwidth 

efficient monitoring. 

2. The Trend Bulk jargon interface is used for bandwidth efficient transfer of large stable 
datasets for providing trend context. 

3. The Trend Subscription, a PASS interface, is used for bandwidth efficient transfer of 
large and volatile datasets for providing trend context. 

4. The Snapshot jargon interface, often is used to get a snapshot of the value of a 
particular attribute to be combined with the historical context supplied by one of the 
other Trend jargons. 

5. The Control Command jargon allows writing directly to the representation of the 
individual managed objects’ stable attributes. 

6. The Event jargon is a PASS interface to the traps, events and other asynchronous 
notifications. 

 
As far as component implementation goes, the platform interface and translation functions 
(a.k.a. ‘wrapper functions’) may be a part of either the server operations module (in the 
case of Direct IDL jargons) or the Reader and Writer modules (in the case of a PASS-
based jargon).  The wrappers described here are given as examples of the kinds of platform 
integration issues and potential solutions encountered. 

In addition to the jargons, there is a set of jargon management components that serve to 
route management information and commands to and from jargons.  These components 
consist of ‘helper applications’ integrated into the local and remote peer information 
management systems.  They are invoked either automatically or manually (depending on 
the execution architecture) from inside the peer system.  Most commonly, the synchronous 
functions (such as Attribute Snapshots and Control) are invoked by hand from a GUI menu 
or other command, (or occasionally by a peer system automated poller) and the 
asynchronous functions (such as Status and Events) are invoked by a combination of peer 
system notification handlers. 

If the peer system itself offers a CORBA-compliant interface, these functions can be 
incorporated into the shared managed object as a set of standard Object Factory methods 
(CreateJargon, DestroyJargon, BrowseCurrentJargons) and as ORB service installation 
functions (RegisterJargonTypes, InstallJargonService).  The specifics of the Object Factory 
and service installation are dependent on the ORB being used. 

If there is no CORBA ORB interface or it is not available for a particular platform, an 
auxiliary ORB, Corbus, is provided and its management API is installed as an external 
application on the peer information management system.  The standard jargon management 
attributes described in the system interface section above appear as the user-visible 
application interface. 



 

 82

23.1. Status Transfer 
Shared managed objects that wish to export status information need to create a 
STATUS_PASS Writer, which will in turn locate or, if needed, create a STATUS_PASS 
instance in the ORB.  The STATUS_PASS Writer writes status updates to the 
STATUS_PASS instance and STATUS_PASS Readers who have subscribed will be 
notified. 

23.1.1.STATUS_PASS 
The STATUS_PASS client library and STATUS_PASS server skeleton are generated by 
the STATUS_PASS IDL.  The server operations skeleton file then is modified to 
implement the STATUS_PASS server functions.  Additional payload specific files define 
status payload utility functions. 

23.1.2.STATUS_PASS Writer 
When a status snapshot is available (either synchronously, thanks to a local polling 
mechanism, or asynchronously because of a local status notification mechanism) it is 
written via a S_P Writer function.  If the value is different from the previous one, it is 
passed on through the STATUS_PASS instance to the STATUS_PASS Reader. 

If the Status values must be translated or mapped to a standard value, translator libraries 
may be linked in.  They are invoked automatically via the Translate function.  Developers 
may specify a Null or NO-OP library that does no translation or reformatting.  

23.1.3.STATUS_PASS Reader 
STATUS_PASS Reader clients use a library to subscribe to Status information updates. 

If the Status values must be translated or mapped to a standard value, translator libraries 
may be linked in.  They are invoked automatically via the Translate function.  Developers 
may specify a Null or NO-OP library that does no translation or reformatting. 

23.1.4.TME Unwrapper 
Status input to TME is defined by the Status Jargon Management interface (see SMO) on 
the ManagedNode or Collection via the Import switch, which when Share is invoked starts 
the reader client.  Status is displayed by association with particular resource icons and 
colors which are invoked by the TME wputstate command.  No other display is needed 
because TME relies heavily on the GUI symbol to implement both managed objects and 
collections of managed objects.  

23.1.5.HPOV Wrapper 
The SMOViewer Export switch uses HPLateStart to invoke the writer client.  A first scan 
of the HPOV database (which is how HPOV implements collections) collects SMOs from 
the set of all MOs and creates the SMOList collection. Subsequent scans use the SMOList 
to collect status data from SMOs and feed them to the writer client. 

23.1.6.HPOV Unwrapper 
Status input to HP OpenView is defined by Status Jargon Management on a Managed 
Object via the Import switch, which starts the reader client when Share is invoked.  Status 



 

 83

is displayed by association with particular resource icons and colors, because HPOV, like 
TME, relies heavily on the GUI symbol to implement individual managed objects. 

23.1.7.TME Wrapper 
The SMOViewer Export switch starts (if needed) the writer client when Share is invoked 
and adds the shared managed object to the writer client process’ SMOList. 

23.2. Trend / Historical Context Bulk Transfer 
The Trend Bulk Jargon is a Direct IDL jargon that synchronously transfers Historical 
Context data.  To transfer trend information, clients direct the Trend server to create 
TrendTable objects, which can then be queried for the desired trend information. 

The synchronization of data between a TrendTable and the actual data available from the 
management platform can be accomplished in several ways.  At one extreme, the 
TrendTable may be populated upon creation and never updated.  At the other extreme, the 
TrendTable may never actually be populated; every request for data goes all the way back 
to the management system.  Between these extremes, the TrendTable may be demand-
populated and refreshed whenever the management platform has additional data, like a 
traditional cache.  The choice of strategy depends on a variety of factors such as storage 
requirements and the interfaces available for extracting trend information from the 
management platform. 

23.2.1.TME Unwrapper 
The Policy Region menu bar is extended with the addition of the P2P menu.  The Trend 
item in this menu launches a GUI which allows the user to select trend information to 
import from a remote management platform.  When the trend information is received, the 
information is written to a file in the TME Brief (one-line) format, and a disabled monitor 
is added which points to the file. 

23.2.2.HPOV Wrapper 
The trend server functions as the wrapper for both HPOV and TME.  The server 
determines at run time which platform it is running with.  If it is HPOV, the server scans 
the directory given by $OV_DB/snmpCollect, where $OV_DB is an environment variable 
defined by OpenView, and makes all of the trend information found there available to 
clients.  HP OpenView’s Trend information collector, snmpCollect, is manually started as 
an independent application, and populates the $OV_DB/snmpCollect directory. 

23.2.3.HPOV Unwrapper 
The OpenView menu bar is extended with the addition of the P2P menu.  The Trend item 
in this menu launches a GUI which allows the user to select trend information to import 
from a remote management platform.  When the trend information is received, the 
information is written to a file in a subdirectory under $OV_DB/snmpCollect (see above). 

23.2.4.TME Wrapper 
The trend server functions as the wrapper for both HPOV and TME.  The server 
determines at run time which platform it is running with.  If it is TME, the server executes 
a series of TME commands (wlsmon and wlookup) to locate all of the SNMP User-



 

 84

Defined Numeric monitors, and makes all of the trend information found there available to 
clients.  The user must set up SNMP monitors separately with Tivoli’s Sentry/Distributed 
Monitoring product. 

23.3. Trend / Historical Context Subscription Transfer 
The Trend Subscription service is also known as the TrendPass service, from its 
component names. 

23.3.1.TREND_PASS 
NOTE: The TREND PASS service has not yet been implemented. 

The TREND_PASS client library and TREND_PASS server skeleton are generated by the 
TREND_PASS IDL.  The server operations skeleton file is then modified to fully 
implement the server functions. Additional payload specific files define trend payload 
utility functions. 

23.3.2.TREND_PASS Writer 
When a TrendTable entry snapshot is available, it is written via a TREND_PASS Writer 
function.  If the value is different from the previous one, it is passed on through the 
TREND_PASS instance to the TREND_PASS Reader. 

If the TrendTable values must be translated or mapped to a standard value, translator 
libraries may be linked in.  They are invoked automatically via the Translate function.  
Developers may specify a Null or NO-OP library, which does no translation or 
reformatting 

23.3.3.TREND_PASS Reader 
TREND_PASS Reader clients use a library to subscribe to TrendTable entry information 
updates. 

If the TrendTable entry values must be translated or mapped to a standard value, translator 
libraries may be linked in.  They are invoked automatically via the Translate function.  
Developers may specify a Null or NO-OP library, which does no translation or 
reformatting. 

23.3.4.TME Unwrapper 
TrendSubscription input to TME is defined by the TrendSubscription Jargon Management 
(see SMOViewer) as either ManagedNode or Collection extension attribute.  TrendTables 
are populated when a Share invoke sees the  Import switch and starts the process of 
subscribing, creates a local TrendTable and starts the TREND_PASSREADER .  
TrendTables are made visible via a TME Collection Menu hook plus tk windows 
application TrendViewer. 

23.3.5.HPOV Wrapper 
HP OpenView's Trend information collector, snmpCollect, is manually started as an 
independent  application.  It is manually configured to collect from SMOs by the 
SMOViewer Export switch and the wrapper tracks the collection by monitoring collection 
files when Share is invoked. 



 

 85

23.3.6.HPOV Unwrapper 
TrendSubscription input to HP OpenView is defined by the TrendBulk Jargon 
Management on a managed object via the Import command, which starts the reader client 
via HPLateStart. TrendTables are made visible via a toplevel OV installed tk windows 
TrendViewer application. 

23.3.7.TME Wrapper 
The Trend Jargon Management’s Export command starts an external application 
formatting of collection information previously configured (by the TME Collection 
configuration API). 

23.4. Basic Shared Managed Object Attribute Snapshot 
Attribute Snapshots use the CORBA standard IDL primitive attribute to define a 
synchronous GET function for each attribute whose value is to be collected for a shared 
managed object. 

23.4.1.TME Unwrapper 
The Snapshot Jargon Management (see SMOViewer) defines attribute snapshot input to 
TME as a Collection extension attribute.  Attribute display structures are populated by the 
Import switch, which starts the remote collection process when Share is invoked.   
Attributes are made visible via a TME Collection Menu hook, plus a tk windows 
application MIB Browser known as SnapshotViewer. 

23.4.2.HPOV Wrapper 
The SMOViewer Export switch uses the HP OpenView application startup function 
HPLateStart to invoke the writer client when Share is invoked.  A first scan of the HPOV 
database collects SMOs from the set of all MOs and creates the SMOList. Subsequent 
scans use the SMOList to collect attribute data from SMOs and feed them to the writer 
client. 

23.4.3.HPOV Unwrapper 
The Snapshot Jargon Management defines input to HP OpenView.  Snapshot viewer is an 
external installed tk windows application which reads SMOList and collects MIB data 
from the Snapshot reader client for each SMO (does not  update OV database for that 
SMO). 

23.4.4.TME Wrapper 
The SMOViewer Export switch starts (if needed) and adds the shared managed object to 
the writer client process when Share is invoked.  The writer client scans all the SMOs in 
the SMOList. 

23.5. Basic Shared Managed Object Attribute Control 
Attribute Snapshots use the CORBA standard IDL primitive attribute  with the option 
read-write to define a synchronous SET function for each attribute whose value is to be 
controlled on a shared managed object. 



 

 86

23.5.1.TME Unwrapper 
The Control Jargon Management (see SMOViewer) defines control interfaces as a  
  ManagedNode extension attribute.  Current values are first populated by a legacy 
callback on the appropriate Sentry Collection; the Control operation result is used to 
update the display.  The display itself is implemented via a ManagedNode hook plus a tk 
windows application which is a variant of the SnapshotViewer. 

23.5.2.HPOV Wrapper 
The SMOViewer Export switch uses HPLateStart to start the server when Share is 
invoked.  A first scan of the HPOV database collects SMOs from the set of all MOs and 
creates the SMOList. Subsequent scans use the SMOList to collect attribute data from 
SMOs for initial value setting.  SET requests are handled as they arrive. 

23.5.3.HPOV Unwrapper 
The Control Jargon Management defines input to HP OpenView.  The Control viewer is a 
variant of the Snapshot viewer with writing (SETs) enabled. 

23.5.4.TME Wrapper 
The SMOViewer Export switch starts (if needed) and adds the shared managed objects to 
the writer client process when Share is invoked.  The writer client scans all the SMOs in 
the SMOList with Control enabled. 

23.6. Event Forwarding 
NOTE: Event Forwarding has not yet been implemented. 

Shared managed objects that wish to export status information need to create a 
STATUS_PASS Writer, which will in turn create a STATUS_PASS instance.  Status 
updates are written to the STATUS_PASS instance and STATUS_PASS Readers who 
have subscribed will be notified. 

23.6.1.EVENT_PASS 
The EVENT_PASS client library and EVENT_PASS server skeleton file are generated by 
the EVENT_PASS IDL.  The server operations skeleton file is then modified to fully 
implement the server functions.   

23.6.2.EVENT_PASS Writer 
When an event is available, it is written via an EVENT_PASS Writer function. 

In the case of events, the value is always different from the previous one, so it is passed on 
through the EVENT_PASS instance to the EVENT_PASS Reader. 

If the events must be translated or mapped to a standard format, translator libraries may be 
linked in.  They are invoked automatically via the Translate function.  Developers may 
specify a Null or NO-OP library, which does no translation or reformatting.  

23.6.3.EVENT_PASS Reader 
EVENT_PASS Reader clients use a library to subscribe to Events. 



 

 87

If the events must be translated or mapped to a standard format, translator libraries may be 
linked in.  They are invoked automatically via the Translate function.  Developers may 
specify a Null or NO-OP library, which does no translation or reformatting. 

23.6.4.TME Unwrapper 
Input to TME is defined in Enterprise Console Event handling or in SMOViewer as a 
ManagedNode extension attribute EventLog which is populated by  the Import switch 
starting, when Share is invoked, a legacy callback logfile writer and  an EVENT_PASS 
reader client.  The event logs are visible via a ManagedNode menu hook plus a tk windows 
application EventLogViewer or by forwarding to EnterpriseConsole. 

23.6.5.HPOV Wrapper 
The SMOViewer Export switch, when Share is invoked,  uses HPLateStart to invoke the  
writer client.  A first scan of the HPOV database collects SMOs from the set of all MOs 
and creates the SMOList. Subsequent scans use the SMOList to setup event forwarding  
from SMOs and feed them to the write. 

23.6.6.HPOV Unwrapper 
Input to HP OpenView is defined by the Event Jargon Management, which uses the Import 
switch and the Share function to start the Event reader client.  The EventViewer is an 
external installed tk windows application which accepts event data from members of the 
SMOList 

23.6.7.TME Wrapper 
The SMOViewer Export switch and the Share function start (if needed) and add the M.O. 
to the writer client process which covers all the SMOs in the SMOList with event 
forwarding  enabled. 

23.7. Jargon Management 
The normally visible Jargon management interfaces consist of managing the the Shared 
Managed Objects, the local Managed Objects and Collections on which they are based, the 
local representations of the remote Peer Managers which have custody, and the connecting 
Jargons. For the most part, the operators deal with the Share/Unshare functions, which 
create/destroy a SMO.  All the other operations are subsidiary. 

Access to the SMO and Peer Manager interfaces is provided by P2P Management browsers 
and control GUIs which can either be a top-level management system menu item (for 
shared managed objects which are managed as collections) or can be attached to individual 
SMOs when they require individual jargons. 

‘Under the hood’ Jargon management interfaces implement a number of operations 
policies such as updates-only distribution, writer multiplexing level, persistent storage 
usage, and security level.  In addition they coordinate jargon component startup and 
interactions with the parent platform components such as pollers and displays. 

Access to low-level Jargon management interfaces is via a combination of environment 
variables, command line arguments and a monitoring and control GUI that breaks out the 
individual jargon components. 



 

 88

 
 



 

 89

 

24. Appendices 

24.1. On-line References 
• Peer to Peer System Requirements -reqs.html 
• Network Management Study – nmfinal4.html 
• Introduction to Cronus - http://morpheus.bbn.com/cronus_man/ 
• Cronus Operator Manual - http://morpheus.bbn.com/cronus_man/operman/cat1/ 
• Cronus User Manual - http://morpheus.bbn.com/cronus_man/userman/cat1/ 
• Corbus Operator’s and Installation Manual - 

http://www.bbn.com/offerings/corbus/corbusim.html 
• CORBA 2.0 Specification - http://www.omg.org/corba/corbiiop.htm 
• standard SNMP MIB definitions -atommib.html 
• standard SNMP MIB definitions - 1id-abstracts.html 
• Odyssey Research Associates - http://www.oracorp.com/ 
• SNMPIDL - http://www.smile.fr/us/prod.htm 
• XBind - http://comet.ctr.columbia.edu/xbind/ 
 

24.2. Glossary 

24.2.1.Peer to Peer  
A communications model that allows but does not require the management systems to 
define themselves as subordinates or superiors in order to exchange information about the 
managed objects in their domain. 

24.2.2.Jargon  
A specialized CORBA-based communications service (and associated API) that translates 
and distributes management information about shared managed objects to heterogeneous 
peer management systems using infrastructure objects. 

24.2.3.Managed Object 
A device or component whose management interface is defined via an object-oriented 
language such as the SNMP MIB definitions.  Also known as a Managed Object Class or 
MOC. 

24.2.4.Managed Object Instance or MOI 
A specific instance of a managed object class, identified by a fully distinguished name 
(system or node name plus any other labels that will enable it to be distinguished from 
others of its class. 



 

 90

24.2.5.Shared Managed Object 
A distributed managed object, responsibility for which is shared among peer management 
systems.  It is defined as a collection of jargons that form an association from a local 
managed object to the custodial set of remote peer management systems. 

24.2.6.Infrastructure Object 
A jargon component which uses object-oriented technology, often CORBA-based, to 
export or import shared managed object information. There are two main classes of 
infrastructure objects: distributed objects, which are CORBA-based, and local objects, 
which are not distributed and use traditional object oriented languages and techniques.  Of 
the distributed infrastructure objects there are two types: direct or synchronous 
request/response objects and indirect or piecewise asynchronous service (PASS) objects. 

24.2.7.Direct Object  
A collection of management information and operations from a shared managed object, the 
API to which is directly defined by CORBA IDL.  Since CORBA IDL operations are 
based on synchronous RPC, this family of jargons is useful only for occasional information 
transfers.  Compare with Indirect or PASS Object. 

24.2.8.Indirect Object  
see PASS Object 

24.2.9.PASS Object  
A PASS Object, together with the associated reader and writer wrappers, allows a peer 
management system to subscribe to an update service which only distributes the latest 
changes in a shared managed object.  PASS objects are defined by a templatized IDL, 
which specifies the transport and the standard transfer datatype. 

24.2.10.Collateral Services 
A set of services which can be defined modularly by their own architectures but whose 
functions provide necessary utilities for management systems. 

24.2.11.Authentication 
A security function where the identities of the source and occasionally the destination(s) in 
an information transfer are checked, usually by cryptographic methods, to ensure they are 
the source and destination(s) intended. 

24.2.12.Authorization  
A security function where the right or authority of the requestor to request an operation is 
checked, usually by comparing the requestor’s identity to an access control set or by 
checking a permissions token included with the request for validity. 

24.2.13.Integrity 
A security function where the request, response or notification message is checked, usually 
cryptographically, to detect tampering. 



 

 91

24.2.14.Privacy 
A security function where isolation or encryption prevent interception or unauthorized 
reading of sensitive request, response or notification messages.  

24.2.15.Replay Attack 
An attempt to fool a destination into accepting as genuine a request, response or 
notification message that is actually a stale or misleading copy of an earlier, intercepted 
message.  

24.2.16.Denial of Service Attack 
An attempt to prevent useful work or communication by others by overloading the capacity 
of some resource.  Distinguished from simple overload by the hostile intent of the source. 

24.2.17.Persistent Storage 
Keeping information on disk or in another storage medium, which will survive the crash or 
power failure of the peer to peer system. 

24.2.18.Management of Management 
Also known by its acronym, MOM, the recursive application of standardized management 
methods to the management systems and infrastructure.  As bootstrapping and graceful 
shutdown require that the management systems work before most network, system and 
collateral services infrastructure is up and when they are down, this results in a certain 
duplication and occasional embedding of some services and increased overhead. 

24.2.19.Heartbeat 
A management of management function in which communications infrastructure which is 
only occasionally used or whose traffic is sporadic is periodically checked to see if it is up.  
The period 

is determined by trading off how quickly the information transferred can go stale against 
the overhead cost of using the channel for MOM information. 

24.2.20.XBind  
The ATM interface is XBind, a CORBA based management API based on the ATM 
signaling interface and used to control end to end ATM resources. 

 
 




